Abstract

A performance comparison between the electrical Cu-based backplane and a full-optical fiber-based backplane is presented in terms of capacity and power consumption. By means of systematic simulations we find the electrical configuration, which allows to optimize the Cu-based backplane by exploiting the best technologies available today. On the other hand, a fiber-based optical backplane is proposed by exploiting the most performing VCSEL sources. Limitations of the electrical and optical approaches are discussed, considering their capabilities to support up to about 25-Gb/s transmission and the possibility to evolve towards higher bit-rates.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kipp, “The Limit of Switch Bandwidth,” Proc. OFC 2011, Los Angeles, CA, paper OMV1 (2011).
    [CrossRef]
  2. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” J. Lightwave Technol.30(4), 448–457 (2012).
    [CrossRef]
  3. N. Fehratovic and S. Aleksic, “Power Consumption and Scalability of Optically Switched Interconnects for High-Capacity Network Elements,” Proc. OFC 2011, Los Angeles, CA, paper JWA84 (2001).
  4. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link,” Proc. IEEE Photonics Conference (IPC 2012), paper PD1.5 (2012).
    [CrossRef]
  5. P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
    [CrossRef]
  6. http://researcher.watson.ibm.com/researcher/files/ussasha/OFC_2012_OTh1E1_40G_SiGe_Link_Rylyakov_v5.pdf
  7. N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
    [CrossRef]
  8. C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
    [CrossRef]
  9. http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
  10. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
    [CrossRef]
  11. W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012).
    [CrossRef]
  12. N. N. Ledentsov, J. A. Lott, P. Wolf, P. Moser, J. R. Kropp, and D. Bimberg, “High Speed VCSELs for Energy-Efficient Data Transmission,” Proc. ISLC 2012, paper WB1 (2012).
    [CrossRef]
  13. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
    [CrossRef]
  14. S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
    [CrossRef]
  15. B. Offrein, “Silicon Photonics packaging requirements,” in Proc, IBM Silicon Photon. Workshop, Munich, Germany, 1–14 (2011). http://www.siliconphotonics.eu/munich_slides/2_IBM.pdf

2012

A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” J. Lightwave Technol.30(4), 448–457 (2012).
[CrossRef]

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012).
[CrossRef]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

2009

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

2006

C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
[CrossRef]

Amezcua, A.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Berger, C.

C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
[CrossRef]

Bimberg, D.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012).
[CrossRef]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Blokhin, S. A.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Boffi, P.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

Boletti, A.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

Caspar, C.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Fiol, G.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Freund, R.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Gatto, A.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

Geen, M.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Gustavsson, J. S.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Haglund, E.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Hofmann, W.

W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012).
[CrossRef]

Karachinskiy, L. Y.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Kögel, B.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Kropp, J.-R.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Kuyt, G.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Larisch, G.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

Larsson, A.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Ledentsov, N. N.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Li, H.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

Lott, J. A.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Maleev, N. A.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Martelli, P.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

Martinelli, M.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

Maximov, M. V.

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Molin, D.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Moser, P.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

Muting, A.

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Nadtochiv, A. M.

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Novikov, I. I.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Offrein, B. J.

C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
[CrossRef]

Payusov, A. S.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

Safaisini, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Schmatz, M.

C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
[CrossRef]

Shchukin, V. A.

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

Taubenblatt, A.

Westbergh, P.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Wolf, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

Electron. Lett.

P. Boffi, A. Gatto, A. Boletti, P. Martelli, and M. Martinelli, “12.5 Gbit/s VCSEL-based transmission over legacy MMFs by centre-launching technique,” Electron. Lett.48(20), 1289 (2012).
[CrossRef]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850nm VCSELs with 28GHz modulation bandwidth operating error-free up to 44Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett.48(20), 1292 (2012).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Muting, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiv, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501 (2009).
[CrossRef]

J. Lightwave Technol.

J. Photon.

W. Hofmann and D. Bimberg, “VCSEL-Based Light Sources—Scalability Challenges for VCSEL-Based Multi-100-Gb/s Systems,” J. Photon.4(5), 1831–1843 (2012).
[CrossRef]

Proc. SPIE

N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, “Progress on single mode VCSELs for data- and tele-communications,” Proc. SPIE8276, 82760K, 82760K-11 (2012).
[CrossRef]

C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,” Proc. SPIE6124, 61240J, 61240J-12 (2006).
[CrossRef]

Other

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp

N. N. Ledentsov, J. A. Lott, P. Wolf, P. Moser, J. R. Kropp, and D. Bimberg, “High Speed VCSELs for Energy-Efficient Data Transmission,” Proc. ISLC 2012, paper WB1 (2012).
[CrossRef]

N. Fehratovic and S. Aleksic, “Power Consumption and Scalability of Optically Switched Interconnects for High-Capacity Network Elements,” Proc. OFC 2011, Los Angeles, CA, paper JWA84 (2001).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link,” Proc. IEEE Photonics Conference (IPC 2012), paper PD1.5 (2012).
[CrossRef]

http://researcher.watson.ibm.com/researcher/files/ussasha/OFC_2012_OTh1E1_40G_SiGe_Link_Rylyakov_v5.pdf

B. Offrein, “Silicon Photonics packaging requirements,” in Proc, IBM Silicon Photon. Workshop, Munich, Germany, 1–14 (2011). http://www.siliconphotonics.eu/munich_slides/2_IBM.pdf

S. Kipp, “The Limit of Switch Bandwidth,” Proc. OFC 2011, Los Angeles, CA, paper OMV1 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical interconnection via backplane.

Fig. 2
Fig. 2

Electrical transceivers evolution.

Fig. 3
Fig. 3

Electrical solution scheme: Cu-based interconnections.

Fig. 4
Fig. 4

Link attenuation vs. frequency

Fig. 5
Fig. 5

Power analysis of electrical solution

Fig. 6
Fig. 6

Optical solution scheme: optical fibers based interconnections

Tables (2)

Tables Icon

Table 1 Parameters used in simulations to achieve the best electrical configuration.

Tables Icon

Table 2 Comparison between electrical and optical solution.

Metrics