Abstract

We present the design and realization of short-wavelength (λ = 4.53 μm) and buried-heterostructure quantum cascade lasers in a master oscillator power amplifier configuration. Watt-level, singlemode peak optical output power is demonstrated for typical non-tapered 4 μm wide and 5.25 mm long devices. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 25° and 27° in and perpendicular to growth direction, respectively. We demonstrate singlemode tuning over a range of 7.9 cm−1 for temperatures between 263K and 313K and also singlemode emission for different driving currents. The side mode suppression ratio is measured to be higher than 20 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
    [CrossRef]
  2. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
    [CrossRef]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
    [CrossRef]
  4. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
    [CrossRef]
  5. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett.28, 16–18 (2003).
    [CrossRef] [PubMed]
  6. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt.43, 3329–3334 (2004).
    [CrossRef] [PubMed]
  7. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
    [CrossRef]
  8. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
    [CrossRef]
  9. J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
    [CrossRef]
  10. P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).
  11. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
    [CrossRef]
  12. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
    [CrossRef] [PubMed]
  13. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
    [CrossRef]
  14. J. Faist, Quantum Cascade Lasers (Oxford University, 2013)
    [CrossRef]
  15. A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).
  16. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
    [CrossRef] [PubMed]
  17. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
    [CrossRef]
  18. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
    [CrossRef]
  19. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20, 3890–3897 (2012).
    [CrossRef] [PubMed]
  20. A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
    [CrossRef]
  21. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
    [CrossRef]
  22. J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
    [CrossRef]
  23. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
    [CrossRef]
  24. E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

2013

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
[CrossRef] [PubMed]

2012

P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20, 3890–3897 (2012).
[CrossRef] [PubMed]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

2011

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

2010

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

2009

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

2008

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

2006

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

2004

2003

2002

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

1997

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Baillaergeion, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Beck, M.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Belyanin, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Bismuto, A.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

Blanchard, R.

Blaser, S.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Bol, R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Bonetti, Y.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Bour, D.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Cádenas, L.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Capasso, F.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
[CrossRef] [PubMed]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Cho, A. Y.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Cozine, S.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt.43, 3329–3334 (2004).
[CrossRef] [PubMed]

Diehl, L.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Dittert, K.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Dupuis, R. D.

Duxbury, G.

Emmenegger, L.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Faist, J.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

J. Faist, Quantum Cascade Lasers (Oxford University, 2013)
[CrossRef]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Forchel, A.

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Fraser, M. P.

Friedl, J.

Fuchs, P.

Giesemann, A.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Giovannini, M.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Gmachl, C.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Gordon, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Goyal, A. K.

Hinkov, B.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

Höfler, G.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Höfling, S.

Hofstetter, D.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Huang, Y.

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Hvozdara, L.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Jäger, W.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Joss, A.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Kamp, M.

Kärtner, F. X.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Koeth, J.

Köster, J. R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Kosterev, A. A.

Langford, N.

Lehmann, M. F.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Lim, A.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Liu, H. C.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Loncar, M.

Looser, H.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Maier, T.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Manne, J.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Manninen, A.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Mansuripur, T. S.

McCulloch, M.

Menzel, S.

Mohn, J.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Normand, E.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

Pflügl, C.

Rauter, P.

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Roller, C.

Ryou, J. H.

Sanchez, A.

Schneider, H.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Siegrist, H.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Terazzi, R.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Tittel, F. K.

Troccoli, M.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Tulip, J.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Turner, G. W.

Tuzson, B.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Wang, C. A.

Wang, C. Y.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Weidmann, D.

Well, R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).

Worschech, L.

Wunderlin, P.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Appl. Phys. Lett.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

El. Lett.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

Environ. Sci. Technol.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. Quantum Electron.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Rapid Comm. Mass Spectrom.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Other

J. Faist, Quantum Cascade Lasers (Oxford University, 2013)
[CrossRef]

A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).

E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission curve (left-hand scale) and modal losses (right-hand scale) of a 5.25 mm long (a) DFB and (b) MOPA device. The periodicity of the grating sections is 717 nm for a spectral emission around 2210 cm−1. (a) The grating coupling coefficient for the DFB device with and without perturbation (green/black) is 1.4 cm−1. As can be seen already very small fluctuations of the ridge width are enough to completely eliminate the effect of the grating. (b) The DFB section of the MOPA device comprises a grating with a coupling strength of 35 cm−1 and is 1.25 mm long whereas the FP cavity has a length of 4 mm. An AR-coating is added to the front-facet. The perturbation shows barely any effect on the mode discrimination of this geometry.

Fig. 2
Fig. 2

Picture of a fabricated MOPA device mounted on a gold-coated copper heatsink. The shown device consists of a 2.5 mm long DFB section (upper part) and a 4 mm long FP cavity (lower part).

Fig. 3
Fig. 3

Typical farfield of a 4 μm wide and 5.25 mm long device measured at a driving current of 1500 mA and a temperature of 293K. The divergence of the device is measured to be 25° along the growth direction and 27° perpendicular to that direction.

Fig. 4
Fig. 4

Typical light-current-voltage characteristics of a 4 μm × 5.25 mm MOPA QC laser with front-facet AR-coating and a 1.25 mm long DFB section. Between 0.6 and 1 W of peak optical output power are extracted for 100 ns long pulses at 1% duty cycle in the temperature range between 313K and 263K.

Fig. 5
Fig. 5

(a) Typical singlemode spectral tuning for 50 ns long driving pulses (1% duty cycle) at a fixed temperature of 293K by varying the driving current. (b) Singlemode tuning spectra also measured for 50 ns current pulses (1% duty cycle). In this case the driving current was fixed to 1500 mA and the temperature was varyied between 263K and 313K leading to a total spectral tuning of 7.9 cm−1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g D F B ( λ ) α D F B > g ( λ max ) α m

Metrics