Abstract

We present the design and realization of short-wavelength (λ = 4.53 μm) and buried-heterostructure quantum cascade lasers in a master oscillator power amplifier configuration. Watt-level, singlemode peak optical output power is demonstrated for typical non-tapered 4 μm wide and 5.25 mm long devices. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 25° and 27° in and perpendicular to growth direction, respectively. We demonstrate singlemode tuning over a range of 7.9 cm−1 for temperatures between 263K and 313K and also singlemode emission for different driving currents. The side mode suppression ratio is measured to be higher than 20 dB.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
    [CrossRef]
  2. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
    [CrossRef]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
    [CrossRef]
  4. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
    [CrossRef]
  5. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett.28, 16–18 (2003).
    [CrossRef] [PubMed]
  6. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt.43, 3329–3334 (2004).
    [CrossRef] [PubMed]
  7. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
    [CrossRef]
  8. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
    [CrossRef]
  9. J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
    [CrossRef]
  10. P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).
  11. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
    [CrossRef]
  12. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
    [CrossRef] [PubMed]
  13. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
    [CrossRef]
  14. J. Faist, Quantum Cascade Lasers (Oxford University, 2013)
  15. A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).
  16. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
    [CrossRef] [PubMed]
  17. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
    [CrossRef]
  18. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
    [CrossRef]
  19. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20, 3890–3897 (2012).
    [CrossRef] [PubMed]
  20. A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
    [CrossRef]
  21. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
    [CrossRef]
  22. J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
    [CrossRef]
  23. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
    [CrossRef]
  24. E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

2013 (3)

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
[CrossRef] [PubMed]

2012 (7)

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20, 3890–3897 (2012).
[CrossRef] [PubMed]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

2011 (1)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

2010 (1)

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

2009 (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

2008 (2)

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

2006 (1)

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

2004 (1)

2003 (1)

2002 (2)

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
[CrossRef]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Baillaergeion, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Beck, M.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Belyanin, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Bismuto, A.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

Blanchard, R.

Blaser, S.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Bol, R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Bonetti, Y.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Bour, D.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Cádenas, L.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Capasso, F.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express21, 4518–4530 (2013).
[CrossRef] [PubMed]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Cho, A. Y.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Cozine, S.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt.43, 3329–3334 (2004).
[CrossRef] [PubMed]

Diehl, L.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express20, 23339–23348 (2012).
[CrossRef] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Dittert, K.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Dupuis, R. D.

Duxbury, G.

Emmenegger, L.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Faist, J.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

J. Faist, Quantum Cascade Lasers (Oxford University, 2013)

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Forchel, A.

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Fraser, M. P.

Friedl, J.

Fuchs, P.

Giesemann, A.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Giovannini, M.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Gmachl, C.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Gordon, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Goyal, A. K.

Hinkov, B.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

Höfler, G.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Höfling, S.

Hofstetter, D.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Huang, Y.

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Hvozdara, L.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Jäger, W.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Joss, A.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Kamp, M.

Kärtner, F. X.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Koeth, J.

Köster, J. R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Kosterev, A. A.

Langford, N.

Lehmann, M. F.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Lim, A.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Liu, H. C.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Loncar, M.

Looser, H.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Maier, T.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Manne, J.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Manninen, A.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Mansuripur, T. S.

McCulloch, M.

Menzel, S.

Mohn, J.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Normand, E.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

Pflügl, C.

Rauter, P.

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

Roller, C.

Ryou, J. H.

Sanchez, A.

Schneider, H.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Siegrist, H.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Terazzi, R.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Tittel, F. K.

Troccoli, M.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

Tulip, J.

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

Turner, G. W.

Tuzson, B.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

Wang, C. A.

Wang, C. Y.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Weidmann, D.

Well, R.

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).

Worschech, L.

Wunderlin, P.

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B109, 461–466 (2012).
[CrossRef]

J. Manne, A. Lim, J. Tulip, and W. Jäger, “Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser,” Appl. Phys. B107, 441–447 (2012).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 166–176 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett.101, 021103 (2012).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable high performance quantum cascade laser,” Appl. Phys. Lett.96, 141105 (2010).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillaergeion, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70, 2670–2672 (1997).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, “Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies,” Appl. Phys. Lett.89, 141116 (2006).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98,181106 (2011).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95, 061103 (2009).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100, 261112 (2012).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (lambda ∼ 7.4 μ m) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80, 4103–4105 (2002).
[CrossRef]

El. Lett. (1)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1W,” El. Lett.48, 646–647 (2012).
[CrossRef]

Environ. Sci. Technol. (1)

P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, and J. Mohn, “Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment,” Environ. Sci. Technol.47, 1339–1348 (2013).

J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” J. Quantum Electron.38, 582–591 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Cozine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77, 053804 (2008).
[CrossRef]

Rapid Comm. Mass Spectrom. (1)

J. R. Köster, R. Well, B. Tuzson, R. Bol, K. Dittert, A. Giesemann, L. Emmenegger, A. Manninen, L. Cádenas, and J. Mohn, “Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry,” Rapid Comm. Mass Spectrom.27, 216–222 (2013).
[CrossRef]

Other (3)

E. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).

J. Faist, Quantum Cascade Lasers (Oxford University, 2013)

A. Wittmann, “High-performance quantum cascade laser sources for spectroscopic applications,” PhD. thesis 18363, ETH Zürich (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics