Abstract

Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.
    [CrossRef]
  2. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B24(8), 1689–1697 (2007).
    [CrossRef]
  3. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett.31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  4. H. W. Chen, T. Sosnowski, C. H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express18(24), 24699–24705 (2010).
    [CrossRef] [PubMed]
  5. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  7. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  8. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006).
    [CrossRef] [PubMed]
  9. J. M. Fini, “Large mode area fibers with asymmetric bend compensation,” Opt. Express19(22), 21866–21873 (2011).
    [CrossRef] [PubMed]
  10. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  11. J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headley, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett.32(17), 2562–2564 (2007).
    [CrossRef] [PubMed]
  12. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak-power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett.31(23), 3423–3425 (2006).
    [CrossRef] [PubMed]
  13. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
    [CrossRef] [PubMed]
  14. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt.21(23), 4208–4213 (1982).
    [CrossRef] [PubMed]
  15. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express21(5), 6233–6242 (2013).
    [CrossRef] [PubMed]
  16. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009).
    [CrossRef]
  17. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B24(8), 1669–1676 (2007).
    [CrossRef]
  18. J. Bromage, J. M. Fini, C. Dorrer, and J. D. Zuegel, “Characterization and optimization of Yb-doped photonic-crystal fiber rod amplifiers using spatially resolved spectral interferometry,” Appl. Opt.50(14), 2001–2007 (2011).
    [CrossRef] [PubMed]
  19. S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, “Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam,” Opt. Lett.37(14), 2832–2834 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

2011 (5)

2010 (1)

2009 (1)

2007 (3)

2006 (3)

2000 (1)

1982 (1)

Augst, S. J.

Birge, J. R.

Bromage, J.

Chang, G.

Chen, H. W.

Chen, L. J.

Desantolo, A.

DiMarcello, F. V.

Dong, L.

Dorrer, C.

Eidam, T.

Fan, T. Y.

Farrow, R. L.

Feder, K.

Fermann, M. E.

Fini, J. M.

Fu, L.

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
[CrossRef] [PubMed]

Galvanauskas, A.

Ghalmi, S.

Goldberg, L.

Goodno, G. D.

Hadley, G. R.

Headley, C.

Jansen, F.

Jauregui, C.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
[CrossRef] [PubMed]

Kärtner, F. X.

Kliner, D. A. V.

Koplow, J. P.

Li, J.

Limpert, J.

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
[CrossRef] [PubMed]

Liu, C. H.

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
[CrossRef] [PubMed]

Mangan, B.

Marcinkevicius, A.

Marcuse, D.

Mckay, H. A.

Meng, L.

Monberg, E.

Monberg, E. M.

Nicholson, J. W.

Otto, H. J.

Peng, X.

Ramachandran, S.

Redmond, S. M.

Ripin, D. J.

Rothenberg, J. E.

Schmidt, O.

Schreiber, T.

Smith, A. V.

Smith, J. J.

Sosnowski, T.

Steinmetz, A.

Stutzki, F.

Thielen, P. A.

Thomas, B. K.

Tünnermann, A.

Westbrook, P. S.

Windeler, R. S.

Wirth, C.

Wisk, P.

Yablon, A. D.

Yan, M. F.

Yu, C. X.

Zuegel, J. D.

Appl. Opt. (2)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun.3, 1217 (2012).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Other (1)

M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Bend-compensation concept: since bend perturbations place the primary limits on performance, a fiber that pre-compensates the bend can achieve much better optical properties. A schematic (left) shows a material index with gradient designed so that the equivalent-index in a bent-fiber configuration (right) attains the desired profile (e.g., a step-index profile).

Fig. 2
Fig. 2

In a conventional, un-compensated design (left), tighter bends lead to degradation of selectivity of the HOM loss. The tighter the bends and the larger the mode size, the more the fundamental and HOMs see a tunneling barrier of comparable width. A bend-compensated cladding (right) restores selectivity, since the compensated portion confines the fundamental but not HOMs. The width of the tunneling barrier seen by the fundamental can thus be engineered independently.

Fig. 3
Fig. 3

For conventional step-index profiles (a) of a given core size, one faces a tradeoff: core contrast can be chosen to lower fundamental-mode losses (b,solid) or increase HOM losses (dashed), but not both. Construction of bend-compensated designs (c) from conventional fiber with the same core profile beats this tradeoff: Calculated losses illustrate de-coupling of bend-loss and single-modedness, since fundamental mode-losses can be reduced orders of magnitude (at 30cm bend diameter) with little change in HOM losses.

Fig. 4
Fig. 4

(a) Index profile of a proposed symmetric BC design. (b) Performance tradeoff compared with conventional designs. (c) Equivalent index profile with Rbend = 15cm, for target design (black) and four profiles with irregularity. (d) Performance of imperfect fibers.

Fig. 5
Fig. 5

Mode intensity profiles show that the fundamental mode (left) is much better confined to the core than LP11 modes (center and right), and will thus be preferentially amplified by gain in the core.

Metrics