Abstract

One of the challenges in laser direct writing with a high numerical-aperture objective is the severe axial focal elongation and the pronounced effect of the refractive-index mismatch aberration. We present the simultaneous compensation for the refractive-index mismatch aberration and the focal elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. By the use of circularly polarized beam illumination and a spatial light modulator, a complex and dynamic slit pupil aperture can be produced to engineer the focal spot. Such a beam shaping method can result in circularly symmetric fabrication along the lateral directions as well as the dynamic compensation for the refractive-index mismatch aberration even when the laser beam is focused into the material of a refractive index up to 2.35.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indexes–an integral-representation,” J. Opt. Soc. Am. A12, 325–332 (1995).
    [CrossRef]
  2. M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).
    [CrossRef]
  3. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett.36, 67–69 (2011).
    [CrossRef] [PubMed]
  4. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
    [CrossRef]
  5. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
    [CrossRef]
  6. K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17, 8685–8695 (2009).
    [CrossRef] [PubMed]
  7. F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
    [CrossRef]
  8. M. Martinez–Corral, C. Ibáñez-López, G. Saavedra, and M. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express11, 1740–1745 (2003).
    [CrossRef]
  9. H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett.36, 2471–2473 (2011).
    [CrossRef] [PubMed]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20, 1559–1567 (2003).
    [CrossRef]
  11. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
    [CrossRef] [PubMed]
  12. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  13. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012).
    [CrossRef] [PubMed]
  14. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16, 5481–5492 (2008).
    [CrossRef] [PubMed]
  15. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express18, 656–661 (2010).
    [CrossRef] [PubMed]
  16. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express19, 24122–24128 (2011).
    [CrossRef] [PubMed]
  17. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
    [CrossRef] [PubMed]
  18. B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
    [CrossRef]
  19. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012).
    [CrossRef] [PubMed]

2012 (3)

2011 (6)

2010 (1)

2009 (1)

2008 (1)

2006 (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

2005 (1)

2003 (3)

1995 (1)

Ams, M.

Audouard, E.

Bellini, N.

Booker, G. R.

Booth, M. J.

Bulla, D.

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
[CrossRef]

Busch, K.

Caballero, M.

Cerullo, G.

Cheng, Y.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
[CrossRef] [PubMed]

Cumming, B. P.

B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
[CrossRef]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

De Silvestri, S.

Debbarma, S.

B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Essig, S.

Gu, M.

B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
[CrossRef]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett.36, 2471–2473 (2011).
[CrossRef] [PubMed]

M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).
[CrossRef]

He, F.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Huot, N.

Ibáñez-López, C.

Jesacher, A.

Jia, B.

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Kawachi, M.

Laczik, Z.

Langford, N. K.

Laporta, P.

Lin, H.

Lin, J.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Luther-Davies, B.

B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
[CrossRef]

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
[CrossRef]

Marangoni, M.

Marshall, G.

Marshall, G. D.

Martinez–Corral, M.

Masuda, M.

Mauclair, C.

Mermillod-Blondin, A.

Metcalf, B. J.

Midorikawa, K.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
[CrossRef] [PubMed]

Ni, J.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Nicoletti, E.

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
[CrossRef]

Osellame, R.

Ozin, G.A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Polli, D.

Ramponi, R.

Renner, M.

Saavedra, G.

Salter, P. S.

Shihoyama, K.

Simmonds, R. D.

Spence, D.

Spring, J. B.

Staude, I.

Stoian, R.

Sugioka, K.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
[CrossRef] [PubMed]

Taccheo, S.

Thomas-Peter, N.

Török, P.

Toyoda, K.

Varga, P.

Vishnubhatla, K.C.

von Freymann, G.

Waller, E. H.

Walmsley, I. A.

Wegener, M.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett.36, 67–69 (2011).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Wilson, T.

Withford, M.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Xu, Z.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Adv. Mat. (1)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mat.18, 265–269 (2006).
[CrossRef]

Appl. Phys. B (2)

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Wide-angle stop-gap chalcogenide photonic crystals generated by direct multiple-line laser writing,” Appl. Phys. B105, 847–850 (2011).
[CrossRef]

B. P. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, “Effect of refractive index mismatch aberration in arsenic trisulfide,” Appl. Phys. B109, 227–232 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, and K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys.13, 083014 (2011).
[CrossRef]

Opt. Express (8)

M. Martinez–Corral, C. Ibáñez-López, G. Saavedra, and M. Caballero, “Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,” Opt. Express11, 1740–1745 (2003).
[CrossRef]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16, 5481–5492 (2008).
[CrossRef] [PubMed]

K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17, 8685–8695 (2009).
[CrossRef] [PubMed]

A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express18, 656–661 (2010).
[CrossRef] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express19, 24122–24128 (2011).
[CrossRef] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (1)

M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Definition of a slit shaped beam. (b) Focusing of a slit-shaped beam by an objective lens. The images in (c–h) are normalized calculated IPSFs in the ZX plane under various conditions. (c–d) are calculated with the full objective aperture (W =1) whilst (e–f) and (g–h) are calculated with slit widths of W = 1.76 mm and 0.76 mm, respectively. (c), (e) and (g) assume the aberration-free condition, whilst (d), (f) and (g) are calculated in the presence of the refractive-index mismatch aberration when a laser beam is focused to a depth of 60 μm.

Fig. 2
Fig. 2

Contour plots of the IPSF in the (a) XY, (b) ZY and (c) ZX planes at normalized intensity levels of 0.5, 0.75, 0.9 and 0.995. (d) Evolution of the FWHM on the x-, y- and z-axes as a function of W when the slit is parallel to the y-axis. The red dotted line corresponds to the location of circular symmetry.

Fig. 3
Fig. 3

(a) Phase pattern generation (b) Experimental setup for simultaneous compensation of aberration and axial elongation with a phase only SLM.

Fig. 4
Fig. 4

(a) Diagram of nanowire fabrication. (b–e) End view of polymer nanowires fabricated with (a) full objective aperture and (b) slit beam shape for the case of an aberration compensated beam. (c) and (d) show the full aperture and slit beam cases, respectively, for the case of an aberrated beam. The length of the rods runs into the page and the scale bars are 1 μm.

Fig. 5
Fig. 5

(a) Diagram of dynamic ring fabrication. (b) and (c) show top view optical images of circular trajectories fabricated in As2S3 with fixed and dynamic slit angles, respectively. The inset images show the slit angle at each point of the trajectory. (d) and (e) show the same circular trajectories fabricated at depths of 1 μm and 7 μm, respectively, both with and without simultaneous compensation of aberration. The diameter of the circles is 10 μm and example phase patterns are shown for each case. Images of the corresponding compensation patterns are also shown.

Metrics