Abstract

We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
    [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
    [CrossRef]
  3. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
    [CrossRef]
  4. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
    [CrossRef]
  5. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
    [CrossRef]
  6. M. Conforti, M. Guasoni, and C. D. Angelis, “Subwavelength diffraction management,” Opt. Lett.33, 2662–2664 (2008).
    [PubMed]
  7. C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
    [CrossRef]
  8. Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008).
    [CrossRef]
  9. C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
    [CrossRef]
  10. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP67, 714–716 (1988).
  11. O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
    [CrossRef]
  12. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
    [CrossRef] [PubMed]
  13. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces,” J. Opt. Soc. Am. A15, 248–260 (1998).
    [CrossRef]
  14. M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010).
    [CrossRef]
  15. J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009).
    [CrossRef]
  16. J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
    [CrossRef]
  17. O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012).
    [CrossRef] [PubMed]
  18. S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
    [CrossRef]
  19. J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
    [CrossRef]
  20. S. M. Rytov, “Electromagnetic properties of layered media,” Sov. Phys. JETP2, 466 (1956).
  21. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am.67, 438–448 (1977).
    [CrossRef]
  22. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
    [CrossRef]
  23. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
    [CrossRef] [PubMed]
  24. I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
    [CrossRef]
  25. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
    [CrossRef]
  26. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
    [CrossRef] [PubMed]
  27. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  28. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
    [CrossRef]
  29. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  30. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
    [CrossRef]
  31. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
    [CrossRef]
  32. A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express21, 1593–1598 (2013).
    [CrossRef] [PubMed]
  33. E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  34. E. Popov and S. Enoch, “Mystery of the double limit in homogenization of finitely or perfectly conducting periodic structures,” Opt. Lett.32, 3441–3443 (2007).
    [CrossRef] [PubMed]
  35. A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
    [CrossRef]
  36. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
    [CrossRef]
  37. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
    [CrossRef] [PubMed]

2013 (2)

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express21, 1593–1598 (2013).
[CrossRef] [PubMed]

2012 (7)

I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
[CrossRef]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012).
[CrossRef] [PubMed]

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

2011 (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

2010 (3)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
[CrossRef]

2009 (3)

J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009).
[CrossRef]

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
[CrossRef]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

2008 (3)

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

M. Conforti, M. Guasoni, and C. D. Angelis, “Subwavelength diffraction management,” Opt. Lett.33, 2662–2664 (2008).
[PubMed]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008).
[CrossRef]

2007 (6)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

E. Popov and S. Enoch, “Mystery of the double limit in homogenization of finitely or perfectly conducting periodic structures,” Opt. Lett.32, 3441–3443 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

2006 (2)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

1998 (1)

1988 (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP67, 714–716 (1988).

1977 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of layered media,” Sov. Phys. JETP2, 466 (1956).

Angelis, C. D.

Artigas, D.

O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012).
[CrossRef] [PubMed]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Belic, M. R.

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

Belov, P.

Belov, P. A.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Caballero, M. T.

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

Conforti, M.

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

Crasovan, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

Crasovan, L.-C.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

D’yakonov, M. I.

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP67, 714–716 (1988).

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Enoch, S.

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Gao, J.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009).
[CrossRef]

Gaylord, T. K.

Ghosh, G.

E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Glytsis, E. N.

Guasoni, M.

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Hwang, E.

I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
[CrossRef]

Iorsh, I.

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008).
[CrossRef]

Jaks?ic, Z.

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

Johansen, S. K.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

Kivshar, Y.

Kivshar, Y. S.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Lakhtakia, A.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Lei, M.

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, and M. Lei, “Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A26, 1615–1621 (2009).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Liscidini, M.

M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010).
[CrossRef]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maslovski, S. I.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Mihalache, D.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

Miret, J. J.

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

Narimanov, E.

I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Narimanov, E. E.

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008).
[CrossRef]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

Orlov, A.

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Pastor, D.

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Podolskiy, V. A.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Polo, J. A.

Popov, E.

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of layered media,” Sov. Phys. JETP2, 466 (1956).

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Shadrivov, I. V.

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
[CrossRef]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010).
[CrossRef]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
[CrossRef]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

Sorni, J. A.

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

Takayama, O.

O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012).
[CrossRef] [PubMed]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

Torner, L.

O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett.37, 4311–4313 (2012).
[CrossRef] [PubMed]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

Vozianova, A. V.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

Vukovic, S.

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

Vukovic, S. M.

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
[CrossRef]

Walker, D. B.

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Yariv, A.

Yeh, P.

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Zapata-Rodríguez, C. J.

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

Advances in OptoElectronics (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Advances in OptoElectronics2012, ID 452502 (2012).
[CrossRef]

Appl. Phys. Lett (1)

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett95, 041902 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett.93, 221109 (2008).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96, 043102 (2010).
[CrossRef]

Electromagnetics (1)

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics28, 126–145 (2008).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

C. J. Zapata-Rodríguez, J. J. Miret, J. A. Sorni, and S. Vuković, “Propagation of dyakonon wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quant. Electron.19, 4601408 (2013).
[CrossRef]

J. Nanophoton. (1)

J. J. Miret, C. J. Zapata-Rodríguez, Z. Jaks̆ić, S. M. Vuković, and M. R. Belić, “Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice,” J. Nanophoton.6, 063525 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Photon. (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon.1, 224–227 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Opt. Commun. (1)

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun.285, 3358–3362 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A81, 013801 (2010).
[CrossRef]

Phys. Rev. B (7)

M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B81, 115335 (2010).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84, 045424 (2011).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006).
[CrossRef]

I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions,” Phys. Rev. B85, 235122 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).
[CrossRef] [PubMed]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett.102, 043903 (2009).
[CrossRef] [PubMed]

Phys. Scripta (1)

S. M. Vuković, J. J. Miret, C. J. Zapata-Rodríguez, and Z. Jaks̆ić, “Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric,” Phys. ScriptaT149, 014041 (2012).
[CrossRef]

Science (2)

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315, 1699–1701 (2007).
[CrossRef] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336, 205–209 (2012).
[CrossRef] [PubMed]

Sov. Phys. JETP (2)

S. M. Rytov, “Electromagnetic properties of layered media,” Sov. Phys. JETP2, 466 (1956).

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP67, 714–716 (1988).

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic arrangement under study, consisting of a semi-infinite MD lattice (x < 0) and an isotropic material (x > 0). In the numerical simulations, the periodic structure includes a Drude metal and a dielectric with εd = 2.25.

Fig. 2
Fig. 2

(a) Variation of relative permittivities ε|| and ε as a function of normalized frequency Ω, for the plasmonic crystal of Fig. 1. Here we assume that f = 1/4. (b) Plot of Eq. (2) in the kykz plane for extraordinary waves (TMz modes) for the three different cases that we come across in the range Ω < 1. Solid line corresponds to kx = 0 and shaded regions are associated with harmonic waves with kx > 0 (non-evanescent fields).

Fig. 3
Fig. 3

Graphical representation of Eq. (8), drawn in solid line, providing spatial dispersion of DSWs arising in the arrangement of Fig. 1, at different frequencies: (a) Ω = 0.20, (b) Ω = 0.28, and (c) Ω = 0.85. Here, the metamaterial is characterized by f = 0.25 and the isotropic medium is air. As a reference we also include equations κ = 0 (dotted line) and κe = 0 (dashed line). (d) Dispersion equation for DSWs as given in (c) but ranged over the region of interest. Points A, B, C, and SP are used in Fig. 4.

Fig. 4
Fig. 4

Variation of the magnetic field (a) |Bx| and (b) |Bz| along the x-axis for the points A, B, and C highlighted in Fig. 3. The field is normalized to unity at its maximum absolute value. We include the point SP associated with TMx surface waves.

Fig. 5
Fig. 5

(a) Solutions of Eq. (8) at a frequency Ω = 0.10 for an isotropic medium of permittivity ε = 10 and a layered metamaterial composed of a Drude metal and a dielectric of εd = 2.25. Curves κ = 0 and κe = 0 are also drawn in dotted and dashed lines, respectively. Profile of the magnetic field (b) |Bx| and (c) |Bz| along the x-axis for the point D shown in (a), including the point SP associated with a TMx surface wave.

Fig. 6
Fig. 6

Exact dispersion curves of TMz modes in a Drude-metal/dielectric compound for different widths of the metallic layer, starting from wm → 0 (dashed line) and including higher widths at a constant rate of 1/10kp (solid lines). For an isotropic medium of permittivity ε = 1, frequencies are: (a) Ω = 0.20, (b) Ω = 0.28, and (c) Ω = 0.85. For ε = 10 we represent TMz modal curves at (d) Ω = 0.10. Also the curve κ = 0 is included in dotted lines.

Fig. 7
Fig. 7

Contour plots of the magnetic fields (a) |Bx| and (b) |Bz| in the xz-plane, computed using FEM. The hyperbolic metamaterial is set on the left, for which only one period is represented. Also we graph the fields along (1) the center of the dielectric layer, (2) the center of the metallic slab, and (3) a plane containing the Ag-PMMA interface.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ε m = 1 1 Ω 2 ,
k x 2 + k y 2 ε | | + k z 2 ε = Ω 2 ,
Ω 1 = 1 1 + ε d ( 1 f ) / f ,
Ω 2 = 1 1 + ε d f / ( 1 f ) ,
κ = k y 2 + k z 2 ε Ω 2
κ o = k y 2 + k z 2 ε Ω 2
κ e = k y 2 + k z 2 ε | | / ε ε | | Ω 2 ,
( κ + κ e ) ( κ + κ o ) ( ε κ o + ε κ e ) = ( ε | | ε ) ( ε ε ) Ω 2 κ o ,
ε κ o + ε κ = 0 .
k y = Ω ε ε ε + ε ,
ε κ o + ε κ e > 0 .
Ω 0 = 1 1 + ε / f + ε d ( 1 f ) / f .
1 ε | | 1 ε = 1 ε .
Θ = 1 ( 1 ε | | ε ) sin 2 θ ,
tan 2 θ D = ε 2 ε 2 ε | | ε + ε 2 .
cos ( k z Λ ) = cos φ m cos φ d ε m 2 k d z 2 + ε d 2 k m z 2 2 ε m ε d k d z k m z sin φ m sin φ d ,
ε | | = ε m ε d ( 1 f ) ε m + f ε d ,
ε = ( 1 f ) ε d + f ε m ,
f = w m w d + w m ,
f ( y , z , t ) = exp ( i k D r i Ω t ) ,
E ( x ) = ( A T E a 1 + A T M a 2 ) exp ( κ x )
a 1 = [ 0 , k z , k y ]
a 2 = [ k y 2 + k z 2 , i k y κ , i k z κ ] .
B ( x ) = 1 Ω c ( ε Ω 2 A T M a 1 A T E a 2 ) exp ( κ x ) .
E ( x ) = A o b o exp ( κ o x ) + A e c e exp ( κ e x ) .
b o , e = [ k y , i κ o , e , 0 ] ,
c o , e = [ i κ o , e k z , k y k z , k z 2 ε Ω 2 ] .
B ( x ) = 1 Ω c [ ε Ω 2 A e b e exp ( κ e x ) A o c o exp ( κ 0 x ) ] .
M ¯ ¯ A = 0 ,
M ¯ ¯ = [ k z i k y κ i κ o k y k z k y i k z κ 0 ε Ω 2 k z 2 i k y κ ε Ω 2 k z k y k z i ε Ω 2 κ e i k z κ ε Ω 2 k y k z 2 ε Ω 2 0 ] .

Metrics