Abstract

A compact fiber-optic vector rotation sensor in which a short section of polarization-maintaining (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single mode fiber without any lateral offset is proposed and experimentally demonstrated. Due to the intrinsic birefringence of the PM fiber, two well-defined resonances (i.e. orthogonally polarized FBG core modes) with wavelength separation of 0.5 nm have been achieved in reflection, and they exhibit a high sensitivity to fiber rotation. Both the orientation and the angle of rotation can be determined unambiguously via simple power detection of the relative amplitudes of the orthogonal core reflections. Meanwhile, instead of using a broadband source (BBS), the sensor is powered by a commercial vertical cavity surface emitting laser (VCSEL) with the laser wavelength matched to the PM-FBG core modes, which enables the sensor to work at much higher power levels (~15 dB better than BBS). This improves the signal-to-noise ratio considerably (~50 dB), and makes a demodulation filter unnecessary. Vector rotation measurement with a sensitivity of 0.09 dB/deg has been achieved via cost-effective single detector real time power measurement, and the unwanted power fluctuations and temperature perturbations can be effectively referenced out.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
    [CrossRef]
  2. O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
    [CrossRef]
  3. J.  Ju, W.  Jin, M. S.  Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
    [CrossRef]
  4. W.  Jin, Z.  Wang, J.  Ju, “Two-mode photonic crystal fibers,” Opt. Express 13(6), 2082–2088 (2005).
    [CrossRef] [PubMed]
  5. L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
    [CrossRef]
  6. Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
    [CrossRef]
  7. B. Y.  Kim, J. N.  Blake, S. Y.  Huang, H. J.  Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12(9), 729–731 (1987).
    [CrossRef] [PubMed]
  8. K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
    [CrossRef]
  9. Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
    [CrossRef]
  10. Z.  Wang, J.  Ju, W.  Jin, “Properties of elliptical-core two-mode fiber,” Opt. Express 13(11), 4350–4357 (2005).
    [CrossRef] [PubMed]
  11. W.  Yiping, M.  Wang, X.  Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [CrossRef] [PubMed]
  12. C. J.  Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [CrossRef]
  13. Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
    [CrossRef]
  14. S.  Ura, S.  Shoda, K.  Nishio, Y.  Awatsuji, “In-line rotation sensor based on VCSEL behavior under polarization-rotating optical feedback,” Opt. Express 19(24), 23683–23688 (2011).
    [CrossRef] [PubMed]
  15. L.  Dejan, D.  Denis, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
    [CrossRef] [PubMed]
  16. R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
    [CrossRef]

2013 (2)

2012 (1)

R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
[CrossRef]

2011 (1)

2010 (1)

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

2009 (1)

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

2007 (1)

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

2006 (1)

Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[CrossRef]

2005 (2)

2004 (2)

J.  Ju, W.  Jin, M. S.  Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[CrossRef]

Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
[CrossRef]

2001 (1)

L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[CrossRef]

2000 (1)

C. J.  Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

1990 (1)

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

1987 (1)

Awatsuji, Y.

Baptista, J. M.

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Blake, J. N.

Budaszewski, D.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Chang-Hasnain, C. J.

C. J.  Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

Chern, G. W.

L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[CrossRef]

Chue, B. R.

Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
[CrossRef]

Claus, R. O.

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

Dejan, L.

Demokan, M. S.

J.  Ju, W.  Jin, M. S.  Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[CrossRef]

Denis, D.

Domanski, A. W.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Ertman, S.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Ferreira, M. S.

R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
[CrossRef]

Frazão, O.

R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
[CrossRef]

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Goleniewski, G.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Guo, T.

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

Huang, S. Y.

Huang, X.

Huang, Y. H.

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

Jesus, C.

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Jin, W.

Ju, J.

Kim, B. Y.

Lin, C. Y.

L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[CrossRef]

Lo, Y. L.

Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
[CrossRef]

Lu, C.

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

Miller, M. S.

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

Mo, Q. J.

Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[CrossRef]

Murphy, K. A.

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

Nishio, K.

Rao, Y. J.

Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[CrossRef]

Roy, P.

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Santos, J. L.

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Shaw, H. J.

Shoda, S.

Silva, R. M.

R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
[CrossRef]

Tam, H. Y.

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

Ura, S.

Vengsarkar, A. M.

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

Wang, L. A.

L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[CrossRef]

Wang, M.

Wang, Z.

Wolinski, T. R.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Wydmanski, M.

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Xu, S. H.

Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
[CrossRef]

Yiping, W.

Zhu, T.

Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J.  Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. H.  Huang, T.  Guo, C.  Lu, H. Y.  Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett. 22(16), 1235–1237 (2010).
[CrossRef]

O.  Frazão, C.  Jesus, J. M.  Baptista, J. L.  Santos, P.  Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

J.  Ju, W.  Jin, M. S.  Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004).
[CrossRef]

J. Lightwave Technol. (1)

K. A.  Murphy, M. S.  Miller, A. M.  Vengsarkar, R. O.  Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8(11), 1688–1696 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

L. A.  Wang, C. Y.  Lin, G. W.  Chern, “A torsion sensor made of a cormgated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[CrossRef]

Opt. Commun. (3)

Y. J.  Rao, T.  Zhu, Q. J.  Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[CrossRef]

R. M.  Silva, M. S.  Ferreira, O.  Frazão, “Temperature independent torsion sensor using a high-birefringent Sagnac loop interferometer,” Opt. Commun. 285(6), 1167–1170 (2012).
[CrossRef]

Y. L.  Lo, B. R.  Chue, S. H.  Xu, “Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating,” Opt. Commun. 230(4-6), 287–295 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

T. R.  Woli?ski, D.  Budaszewski, A. W.  Doma?ski, S.  Ertman, G.  Goleniewski, M.  Wydma?ski, “Optical fiber rotation sensor for application in oil refinery and high electromagnetic noise environment,” Proc. SPIE 6616, 66161U–66164U, 66161U-5 (2007).
[CrossRef]

Supplementary Material (3)

» Media 1: MP4 (419 KB)     
» Media 2: MP4 (419 KB)     
» Media 3: MP4 (419 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of orthogonal-polarimetric vector rotation sensing system (Media 1).

Fig. 2
Fig. 2

Spectral tuning characteristics of VCSEL versus driving currents with different (a) amplitude (with fixed repetition rate of 10 kHz) and (b) repetition rate (with fixed bias current of 4.5 mA).

Fig. 3
Fig. 3

Spectral tuning characteristics of VCSEL versus driving signals: (a) saw-tooth, (b) triangle and (c) sine wave.

Fig. 4
Fig. 4

PM-FBG reflections powered by BBS (black line) and VCSEL (red line), respectively. The dashed blue line shows the VCSEL tuning spectra recorded by the OSA “maximum hold” mode.

Fig. 5
Fig. 5

Measured optical reflected spectra of the system for typical values of the rotator angles.

Fig. 6
Fig. 6

Spectral response (a) of orthogonal-polarimetric PM-FBG core-modes versus rotation over 0° to 90°, and (b) individual peak intensities extracted from the spectra of (a).

Fig. 7
Fig. 7

Normalized intensity of the orthogonal-polarimetric PM-FBG for direction-recognized rotation measurement. The top two figures (colored in green & gray) present the rotation directions and sensitivities.

Metrics