Abstract

We present the first realized three-dimensional (3D) practical implementation of the so called “optical black hole” in microwave frequencies, an electromagnetic (EM) concentrator. The 3D EM wave concentrator was designed with non-resonant gradient index (GRIN) 3D woodpile photonic crystals (PCs) structure in metamaterial regime, and fabricated by Stereolithography (SL) process. Omnidirectional EM wave capture and absorbing ability of the device in a broad bandwidth (12GHz-15GHz) were validated by full-wave simulation and experiments. Such devices may have applications in microwave energy harvesting and radiation detector.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  5. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett.38(10), 1606 (2013).
    [CrossRef]
  6. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007).
    [CrossRef]
  7. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
    [CrossRef] [PubMed]
  8. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006).
    [CrossRef]
  9. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
    [CrossRef] [PubMed]
  10. M. Li, R. X. Miao, and Y. Pang, “More studies on metamaterials mimicking de Sitter space,” Opt. Express18(9), 9026–9033 (2010).
    [CrossRef] [PubMed]
  11. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
    [CrossRef]
  12. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
    [CrossRef]
  13. H. Y. Chen, R. X. Miao, and M. A. Li, “Transformation optics that mimics the system outside a Schwarzschild black hole,” Opt. Express18(14), 15183–15188 (2010).
    [CrossRef] [PubMed]
  14. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express18(16), 16646–16662 (2010).
    [CrossRef] [PubMed]
  15. S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010).
    [CrossRef]
  17. W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
    [CrossRef]
  18. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
    [CrossRef]
  19. J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
    [CrossRef]
  20. Y. R. Yang, L. Y. Leng, N. Wang, Y. G. Ma, and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials,” J. Opt. Soc. Am. A29(4), 473–475 (2012).
    [CrossRef] [PubMed]
  21. R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
    [CrossRef]
  22. A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
    [CrossRef]
  23. Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012).
    [CrossRef]
  24. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
    [CrossRef]
  25. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010).
    [CrossRef] [PubMed]
  26. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
    [CrossRef]
  27. D. W. Prather, “Photonic crystals: theory, applications, and fabrication”,(Wiley, Hoboken, N.J., 2009).
  28. Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010).
    [CrossRef] [PubMed]
  29. Z. Liang and J. Li, “Scaling two-dimensional photonic crystals for transformation optics,” Opt. Express19(18), 16821–16829 (2011).
    [CrossRef] [PubMed]
  30. H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express14(26), 12944–12949 (2006).
    [CrossRef] [PubMed]
  31. L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
    [CrossRef]
  32. B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
    [CrossRef] [PubMed]

2013

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett.38(10), 1606 (2013).
[CrossRef]

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

2012

A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
[CrossRef]

Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012).
[CrossRef]

Y. R. Yang, L. Y. Leng, N. Wang, Y. G. Ma, and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials,” J. Opt. Soc. Am. A29(4), 473–475 (2012).
[CrossRef] [PubMed]

2011

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

Z. Liang and J. Li, “Scaling two-dimensional photonic crystals for transformation optics,” Opt. Express19(18), 16821–16829 (2011).
[CrossRef] [PubMed]

2010

Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010).
[CrossRef] [PubMed]

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010).
[CrossRef] [PubMed]

M. Li, R. X. Miao, and Y. Pang, “More studies on metamaterials mimicking de Sitter space,” Opt. Express18(9), 9026–9033 (2010).
[CrossRef] [PubMed]

H. Y. Chen, R. X. Miao, and M. A. Li, “Transformation optics that mimics the system outside a Schwarzschild black hole,” Opt. Express18(14), 15183–15188 (2010).
[CrossRef] [PubMed]

A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express18(16), 16646–16662 (2010).
[CrossRef] [PubMed]

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B27(10), 2020–2025 (2010).
[CrossRef]

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

2009

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

2007

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006).
[CrossRef]

H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express14(26), 12944–12949 (2006).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
[CrossRef] [PubMed]

2002

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
[CrossRef]

1994

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Argyropoulos, C.

Bai, Y.

Basov, D.

Biswas, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Cai, X.

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

Chan, C.

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

Chan, C. T.

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Chang, Z.

Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012).
[CrossRef]

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

Chen, H.

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007).
[CrossRef]

H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express14(26), 12944–12949 (2006).
[CrossRef] [PubMed]

Chen, H. Y.

Cheng, J.-C.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Climente, A.

A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
[CrossRef]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Degiron, A.

Driscoll, T.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Gajic, R.

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Guo, L. H.

Hao, Y.

Hingerl, K.

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Hu, G.

Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012).
[CrossRef]

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

Isic, G.

Jiang, Q.

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Jin, J.

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
[CrossRef]

Justice, B. J.

B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kallos, E.

Kildishev, A. V.

A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express18(16), 16646–16662 (2010).
[CrossRef] [PubMed]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Kong, J. A.

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Landy, N.

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Leng, L. Y.

Leonhardt, U.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, D.

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

Li, J.

Li, L.

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

Li, M.

Li, M. A.

Li, R.-Q.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Li, Y.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Liang, B.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Liang, Z.

Lin, Z.

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

Liu, S.

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

Lu, W.

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

Luo, C.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
[CrossRef]

Luo, Y.

Ma, H.

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

Ma, Y. G.

Y. R. Yang, L. Y. Leng, N. Wang, Y. G. Ma, and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials,” J. Opt. Soc. Am. A29(4), 473–475 (2012).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

Miao, R. X.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
[CrossRef] [PubMed]

Narimanov, E. E.

A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express18(16), 16646–16662 (2010).
[CrossRef] [PubMed]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

Ong, C. K.

Y. R. Yang, L. Y. Leng, N. Wang, Y. G. Ma, and C. K. Ong, “Electromagnetic field attractor made of gradient index metamaterials,” J. Opt. Soc. Am. A29(4), 473–475 (2012).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

Pang, Y.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006).
[CrossRef]

Prokopeva, L. J.

Ran, L.

Sánchez-Dehesa, J.

A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
[CrossRef]

Schurig, D.

B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Smith, D. R.

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett.38(10), 1606 (2013).
[CrossRef]

Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express14(19), 8694–8705 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Tian, X.

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

Torrent, D.

A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
[CrossRef]

Tyc, T.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Urzhumov, Y.

Urzhumov, Y. A.

Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010).
[CrossRef] [PubMed]

Vasic, B.

Wang, N.

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Wu, L.

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

Yang, Y. R.

Yin, M.

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

Zhang, J.

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Zhang, X.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

Zhou, J.

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

Zhu, X.-F.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Zi, J.

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

Zou, X.-Y.

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

Appl. Phys. Lett.

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009).
[CrossRef]

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, “A broadband acoustic omnidirectional absorber comprising positive-index materials,” Appl. Phys. Lett.99(19), 193507 (2011).
[CrossRef]

A. Climente, D. Torrent, and J. Sánchez-Dehesa, “Omnidirectional broadband acoustic absorber based on metamaterials,” Appl. Phys. Lett.100(14), 144103 (2012).
[CrossRef]

Z. Chang and G. Hu, “Elastic wave omnidirectional absorbers designed by transformation method,” Appl. Phys. Lett.101(5), 054102 (2012).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett.81(13), 2352 (2002).
[CrossRef]

L. Wu, X. Tian, H. Ma, M. Yin, and D. Li, “Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium,” Appl. Phys. Lett.102(7), 074103 (2013).
[CrossRef]

J. Appl. Phys.

W. Lu, J. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys.108(6), 064517 (2010).
[CrossRef]

J. Opt.

J. Zhou, X. Cai, Z. Chang, and G. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt.13(8), 085103 (2011).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Mater.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8(8), 639–642 (2009).
[CrossRef] [PubMed]

Nat. Phys.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009).
[CrossRef]

New J. Phys.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247–247 (2006).
[CrossRef]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys.12(6), 063006 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. Liu, L. Li, Z. Lin, H. Chen, J. Zi, and C. Chan, “Graded index photonic hole: Analytical and rigorous full wave solution,” Phys. Rev. B82, 054204 (2010).

Phys. Rev. Lett.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Y. A. Urzhumov and D. R. Smith, “Transformation Optics with Photonic Band Gap Media,” Phys. Rev. Lett.105(16), 163901 (2010).
[CrossRef] [PubMed]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Solid State Commun.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three-dmensions - new layer-by-layer periodic structure,” Solid State Commun.89(5), 413–416 (1994).
[CrossRef]

Other

D. W. Prather, “Photonic crystals: theory, applications, and fabrication”,(Wiley, Hoboken, N.J., 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabricated sample of the 3D EM wave concentrator shell with GRIN woodpile PCs structure. (a) The sample of the EM wave concentrator. (b) Partial view of the cross-section along the axis of the spherical shell. (c) The relation between the local effective permittivity and log width of woodpile PCs with a rod spacing of 5mm. (d) The schematic of woodpile PCs structure.

Fig. 2
Fig. 2

Power flow in space and in the 3D EM wave concentrator” when an off-centre beam is incident on the structure. (a) Perspective view. (b) Front view (c) Side view.

Fig. 3
Fig. 3

Simulation results of the electric field intensity distributions in the cross section of the system. (a-c) Incident beam on centre at 8 GHz, 13 GHz and 18GHz. (d) Incident beam on centre to the reference sample at 13 GHz. (e-g) Incident beam off centre at 8 GHz, 13 GHz and 18 GHz. (h) Incident beam off centre to the reference sample at 13 GHz.

Fig. 4
Fig. 4

Simulation results of the electric field intensity distributions in the cross section under the incidence of a plane wave at 13GHz. (a) The EM wave concentrator. (b) Reference sample.

Fig. 5
Fig. 5

Dielectric properties of ethanol, oleic acid and the compound medium. (a) Dielectric constants of ethanol, oleic acid and their mixture at a volume ratio of 60:40 in the frequency range of 5 GHz – 20 GHz. The oleic acid has nearly no loss (b) Dielectric constants of the mixture with different volume ratio at the frequency of 12 GHz, 13 GHz, 14 GHz and 15 GHz.

Fig. 6
Fig. 6

Measured electric field intensity distributions for the cross-sectional slice along the axis of the device. (a-d) At 12 GHz, 13 GHz, 14 GHz and 15GHz, respectively.

Fig. 7
Fig. 7

Measured far-field scattering pattern of EM waves for the 3D “EM black hole” and the bare core. Feeding source is along the axis. (a-d) at 12 GHz, 13 GHz, 14 GHz and 15 GHz, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ(r)={ ϵ b ,                         rR ϵ b ( R r ) n ,      R c <r<R ϵ c +iγ,                  r R c ,

Metrics