Abstract

We present a scheme of fiber-connector-type carbon-nanotube-based saturable absorber (CNT-SA) with enhanced thermal damage threshold, in which the CNTs are deposited on the fiber connector end in a ring pattern for evanescent-field interaction instead of direct interaction. The thermal damage threshold of such CNT-SA is found to be increased by around 130% compared with an evenly deposited one. An all-fiber Fabry-Perot (FP) linear cavity passively mode-locked laser is further constructed incorporating the prepared CNT-SA, where the optical power is confined in a relatively short laser cavity to investigate the thermal damage threshold and the performance of the CNT-SA. Stable output pulses with a fundamental repetition rate of 211.84 MHz and a pulse width of 680 fs are generated from the fiber laser. The mode-locking operation can be maintained an intra-cavity average power of 30 mW, indicating that the CNT-SA can withstand a relatively high optical power without performance degradation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).
  2. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009).
  3. C. S. Jun, “J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express19(20), 19775–19780 (2011).
  4. Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, “Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes,” Opt. Lett.37(24), 5079–5081 (2012).
  5. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
  6. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).
  7. K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).
  8. B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).
  9. X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).
  10. S. Y. Ryu, K. S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express20(12), 12966–12974 (2012).
  11. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).
  12. H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).
  13. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
  14. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010).
  15. Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).
  16. H. J. Kim, H. J. Choi, S. M. Nam, and Y. W. Song, “High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition,” Opt. Express19(5), 4762–4767 (2011).
  17. T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,” Opt. Express20(21), 23659–23665 (2012).
  18. A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express21(4), 4665–4670 (2013).
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18(21), 1867–1869 (1993).
  20. K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express17(18), 15608–15613 (2009).
  21. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).
  22. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).
  23. J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).
  24. A. Martinez and S. Yamashita, “10GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101(4), 041118 (2012).
  25. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).
  26. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).

2013 (2)

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express21(4), 4665–4670 (2013).

2012 (6)

2011 (3)

2010 (2)

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010).

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

2009 (4)

2008 (2)

J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).

2007 (3)

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

2004 (2)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

1993 (1)

Aitchison, B.

Bennion, I.

Brown, D. P.

Cai, C. W.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

Choi, H. J.

Chow, K. K.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express17(18), 15608–15613 (2009).

Constable, A.

Digiovanni, D. J.

DiGiovannni, D. J.

J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).

Dong, B.

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

Fuse, K.

Gao, C. X.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Hakulinen, T.

Hao, J.

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

Härkönen, A.

Hirooka, T.

Hori, Y.

Hu, J.

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

Hu, X. H.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

Jun, C. S.

Kashiwagi, K.

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).

Kaskela, A.

Kataura, H.

Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, “Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes,” Opt. Lett.37(24), 5079–5081 (2012).

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Kauppinen, E. I.

Kim, H. J.

Kim, J.

Kim, K. S.

Kim, S.

Kivistö, S.

Kurashima, Y.

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Li, C.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Li, X. H.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Liaw, C. Y.

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

Liu, H. H.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

Liu, X. L.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Lopez, H. A.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

Martinez, A.

Maruyama, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).

Mata, J.

Mervis, J.

Miyamoto, I.

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Morimune, K.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

Nakazawa, M.

Nam, S. M.

Nasibulin, A. G.

Nicholson, J. W.

J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).

Nishizawa, N.

Nozaki, Y.

Okhotnikov, O. G.

Omoda, E.

Ono, T.

Prentiss, M.

Ryu, S. Y.

Sakakibara, Y.

Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, “Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes,” Opt. Lett.37(24), 5079–5081 (2012).

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Set, S. Y.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

Shen, D. Y.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Song, Y. W.

H. J. Kim, H. J. Choi, S. M. Nam, and Y. W. Song, “High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition,” Opt. Express19(5), 4762–4767 (2011).

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

Tan, S.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

Tsukamoto, J.

Wang, Y. G.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Wang, Y. S.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Windeler, R. S.

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

Yamashita, S.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express21(4), 4665–4670 (2013).

A. Martinez and S. Yamashita, “10GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101(4), 041118 (2012).

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).

K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express17(18), 15608–15613 (2009).

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).

Yang, Z.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Yokota, Y.

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Yoshida, M.

Yu, J.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Zarinetchi, F.

Zhang, W.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Zhang, Y.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

Zhao, W.

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

Zhou, K.

Appl. Phys. Lett. (4)

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett.92(2), 021115 (2008).

Y. Kurashima, Y. Yokota, I. Miyamoto, H. Kataura, and Y. Sakakibara, “Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber,” Appl. Phys. Lett.94(22), 223102 (2009).

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).

A. Martinez and S. Yamashita, “10GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101(4), 041118 (2012).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004).

IEEE Photon. J. (1)

X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, and D. Y. Shen, “Wavelength-switchable and wavelength-tunable all-normal-dispersion mode-locked Yb-doped fiber laser based on single-walled carbon nanotube wall paper absorber,” IEEE Photon. J.4(1), 234–241 (2012).

IEEE Photon. Technol. Lett. (2)

B. Dong, J. Hao, J. Hu, and C. Y. Liaw, “Wide pulse-repetition rate range tunable nanotube Q-swiched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010).

J. W. Nicholson and D. J. DiGiovannni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007).

Nano Lett. (1)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett.4(8), 1415–1419 (2004).

Opt. Express (11)

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express17(7), 5711–5715 (2009).

A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010).

K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express17(18), 15608–15613 (2009).

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009).

C. S. Jun, “J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express19(20), 19775–19780 (2011).

S. Y. Ryu, K. S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express20(12), 12966–12974 (2012).

H. J. Kim, H. J. Choi, S. M. Nam, and Y. W. Song, “High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition,” Opt. Express19(5), 4762–4767 (2011).

T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,” Opt. Express20(21), 23659–23665 (2012).

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express21(4), 4665–4670 (2013).

Opt. Laser Technol. (1)

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013).

Opt. Lett. (2)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A72(4), 043816 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the proposed carbon-nanotube-based saturable absorber (CNT-SA) that CNTs are formed onto the end-facet of the fiber in a ring pattern.

Fig. 2
Fig. 2

(a) Calculation of the field distribution of the fundamental mode in a standard single mode fiber, (b) microscopic image of the connector end deposited with CNTs in a ring pattern.

Fig. 3
Fig. 3

(a) Measurement of the nonlinear transmission of the CNT-SA with CNTs in a ring pattern, (b) the real-time normalized-transmission (n-T) of the CNT-SA with CNTs in a ring pattern (upper) and the one with CNTs covering the entire core region (lower) when they are exposed to different incident powers.

Fig. 4
Fig. 4

Experimental setup of an all-fiber Fabry–Perot cavity mode-locked laser incorporated with the prepared CNT-deposited connector end: wavelength division multiplexing (WDM); erbium-doped fiber (EDF); polarization controller (PC); highly reflective dielectric mirror (−1, and −2).

Fig. 5
Fig. 5

(a) Output power against pump power and the arrows indicate the power threshold for each state: continuous-wave (CW); Q-switching (QS); and Q-switched mode-locking (QSML), (b) output optical spectrum (the inset shows oscilloscope trace of the output), (c) autocorrelation trace; and (d) RF spectrum (inset shows wideband RF spectrum up to 3 GHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f rep =c/ 2nL

Metrics