Abstract

Thermal luminescence quenching behavior of a phosphor is essential for application in phosphor converted white light emitting diodes (pc-WLEDs) because the phosphor layer can be heated up to 473K in a working high power WLEDs. Here, we have confirmed indeed a red luminescence of Mn4+ substituting for calcium sites rather than tetrahedral aluminum sites in CaAl4O7:Mn which can be synthesized in pure phase even with boron acid as flux, and examined the low and high temperature luminescent properties in the range of 10 to 500K. We have revealed as well as thermal quenching mechanism that distorted octahedral Mn4+ sites suffer severe thermal quenching. This work, thus, hints a strategy to find a new Mn4+ phosphor with better resistance to thermal impact in the future.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
    [CrossRef]
  2. R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
    [CrossRef]
  3. P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
    [CrossRef]
  4. G. Zhang, J. Wang, Y. Chen, and Q. Su, “Two-color emitting of Ce3+ and Tb3+ co-doped CaLaGa3S6O for UV LEDs,” Opt. Lett.35(14), 2382–2384 (2010).
    [CrossRef] [PubMed]
  5. Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
    [CrossRef]
  6. V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
    [CrossRef]
  7. Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
    [CrossRef]
  8. M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
    [CrossRef]
  9. J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
    [CrossRef]
  10. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  12. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  13. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  14. C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
    [CrossRef]
  15. Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
    [CrossRef] [PubMed]
  16. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
    [CrossRef] [PubMed]
  17. R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
    [CrossRef]
  18. M. Brik and A. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin.133, 69–72 (2013).
    [CrossRef]
  19. Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett.33(16), 1816–1818 (2008).
    [CrossRef] [PubMed]
  20. S. Okamoto and H. Yamamoto, “Luminescent-efficiency Improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO-0.5MgF2-GeO2:Mn4+ deep-red phosphors for light emitting diodes,” J. Electrochem. Soc.157(3), J59–J63 (2010).
    [CrossRef]
  21. J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
    [CrossRef]
  22. M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
    [CrossRef]
  23. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express18(3), 2549–2557 (2010).
    [CrossRef] [PubMed]

2013

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

M. Brik and A. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin.133, 69–72 (2013).
[CrossRef]

J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
[CrossRef]

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

2012

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

2011

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
[CrossRef]

P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
[CrossRef]

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

2010

2009

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
[CrossRef]

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

2008

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett.33(16), 1816–1818 (2008).
[CrossRef] [PubMed]

2006

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Bachmann, V.

V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
[CrossRef]

Brik, M.

M. Brik and A. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin.133, 69–72 (2013).
[CrossRef]

Chen, Y.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

G. Zhang, J. Wang, Y. Chen, and Q. Su, “Two-color emitting of Ce3+ and Tb3+ co-doped CaLaGa3S6O for UV LEDs,” Opt. Lett.35(14), 2382–2384 (2010).
[CrossRef] [PubMed]

Da, N.

DenBaars, S.

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

Donegá, C. M.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Fang, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Hao, Z.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Hirosaki, N.

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

Jing, X.

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

Kim, G.

J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
[CrossRef]

Kim, Y.

J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
[CrossRef]

Kimura, N.

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

Koole, R.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Krolikowski, S.

Kuang, X.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Lei, B. F.

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Li, J. F.

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Li, P.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

Liang, C.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

Lin, C.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Lin, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Liu, C.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Liu, G. K.

Liu, X. T.

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Liu, Y.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Liu, Y. L.

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Luo, Y.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Meijerink, A.

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
[CrossRef]

Mitomo, M.

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

Nakamura, S.

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

Okamoto, S.

S. Okamoto and H. Yamamoto, “Luminescent-efficiency Improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO-0.5MgF2-GeO2:Mn4+ deep-red phosphors for light emitting diodes,” J. Electrochem. Soc.157(3), J59–J63 (2010).
[CrossRef]

Pan, Y. X.

Park, J.

J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
[CrossRef]

Parmentier, A.

P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
[CrossRef]

Peng, M.

Pietra, F.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Pimputkar, S.

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

Poelman, D.

P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
[CrossRef]

Qin, J. L.

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

Qiu, J.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

Quan, Z.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Riemersma, C.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Ronda, C.

V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
[CrossRef]

Sakuma, K.

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

Schmidt, M. A.

Schwefel, H. G.

Smedskjaer, M.

M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
[CrossRef]

Smet, P.

P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
[CrossRef]

Speck, J.

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

Sprenger, B.

Srivastava, A.

M. Brik and A. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin.133, 69–72 (2013).
[CrossRef]

Stiegelschmitt, A.

Su, Q.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

G. Zhang, J. Wang, Y. Chen, and Q. Su, “Two-color emitting of Ce3+ and Tb3+ co-doped CaLaGa3S6O for UV LEDs,” Opt. Lett.35(14), 2382–2384 (2010).
[CrossRef] [PubMed]

Suehiro, T.

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

Tanner, P.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

Wang, J.

M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
[CrossRef]

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

G. Zhang, J. Wang, Y. Chen, and Q. Su, “Two-color emitting of Ce3+ and Tb3+ co-doped CaLaGa3S6O for UV LEDs,” Opt. Lett.35(14), 2382–2384 (2010).
[CrossRef] [PubMed]

Wang, X.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Wondraczek, L.

Xia, Z.

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

Xie, R.

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

Xie, R. J.

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

Xu, F.

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

Yamamoto, H.

S. Okamoto and H. Yamamoto, “Luminescent-efficiency Improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO-0.5MgF2-GeO2:Mn4+ deep-red phosphors for light emitting diodes,” J. Electrochem. Soc.157(3), J59–J63 (2010).
[CrossRef]

Yin, X.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

You, H.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Yue, Y.

M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
[CrossRef]

Zhang, G.

Zhang, J.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Zhang, Q.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

Zhang, X.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Zhuang, J.

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

ACS Nano

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donegá, and A. Meijerink, “High-temperature luminescence quenching of colloidal quantum dots,” ACS Nano6(10), 9058–9067 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Ceram. Int.

J. Park, G. Kim, and Y. Kim, “Luminescent properties of CaAl4O7 powders doped with Mn4+ ions,” Ceram. Int.39, S623–S626 (2013).
[CrossRef]

Chem. Mater.

R. Xie, N. Hirosaki, T. Suehiro, F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006).
[CrossRef]

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Dalton Trans.

Z. Xia, J. Zhuang, A. Meijerink, and X. Jing, “Host composition dependent tunable multicolor emission in the single-phase Ba2Ln1-zTbz(BO3)2Cl:Eu phosphors,” Dalton Trans.42(18), 6327–6336 (2013).
[CrossRef] [PubMed]

J. Am. Ceram. Soc.

M. Peng, X. Yin, P. Tanner, C. Liang, P. Li, Q. Zhang, and J. Qiu, “Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes,” J. Am. Ceram. Soc.n/a (2013), doi:.
[CrossRef]

J. F. Li, B. F. Lei, J. L. Qin, Y. L. Liu, and X. T. Liu, “Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+ phosphor and its afterglow properties,” J. Am. Ceram. Soc.96(3), 873–878 (2013).
[CrossRef]

J. Electrochem. Soc.

P. Smet, A. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011).
[CrossRef]

S. Okamoto and H. Yamamoto, “Luminescent-efficiency Improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO-0.5MgF2-GeO2:Mn4+ deep-red phosphors for light emitting diodes,” J. Electrochem. Soc.157(3), J59–J63 (2010).
[CrossRef]

J. Lumin.

V. Bachmann, A. Meijerink, and C. Ronda, “Luminescence properties of SrSi2AlO2N3 doped with divalent rare-earth ions,” J. Lumin.129(11), 1341–1346 (2009).
[CrossRef]

M. Brik and A. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin.133, 69–72 (2013).
[CrossRef]

J. Mater. Chem.

Y. Liu, X. Zhang, Z. Hao, Y. Luo, X. Wang, and J. Zhang, “Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications,” J. Mater. Chem.21(41), 16379–16384 (2011).
[CrossRef]

M. Smedskjaer, J. Wang, and Y. Yue, “Tunable photoluminescence induced by thermal reduction in rare earth doped glasses,” J. Mater. Chem.21(18), 6614–6620 (2011).
[CrossRef]

J. Phys. D Appl. Phys.

R. J. Xie, N. Hirosaki, K. Sakuma, and N. Kimura, “White light-emitting diodes (LEDs) using (oxy) nitride phosphors,” J. Phys. D Appl. Phys.41(14), 144013 (2008).
[CrossRef]

Nat. Photonics

S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–181 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) XRD patterns of CaAl4O7: 0.1%Mn prepared at different temperature in air with 2%H3BO3 as flux and reference pattern of CaAl4O7 (ICSD #34487) at the bottom. (b) XRD pattern (-o-) of the sample of CaAl4O7: 0.1%Mn prepared at 1400°C, Rietveld refining results (), Bragg reflections (|) and the profile difference between experimental and calculated values (). Inset shows the lattice cell of the compound viewed along c; blue ball: Ca, green ball: Al, red ball: O; purple polyhedra: CaO7, dark cyan polyhedra: AlO4. (c) Exemplary excitation and emission spectra of CaAl4O7: 0.1%Mn4+ prepared at 1400 (curves 1 and 2) and 1600 °C (curves 3 and 4). Calcium sites which could stabilize and accommodate Mn4+: (d) ideal CaO6 octahedron in the compound of CaO, where Ca-O bond length is 2.407(6)Å; (e) CaO7 polyhedron in CaAl4O7, where one Ca-O(1) bond is 2.488(9)Å, two Ca-O(2) bond are 2.367(6)Å, two Ca-O(2) bond are 2.925(6)Å and two Ca-O(3) bond are 2.310(2)Å.

Fig. 2
Fig. 2

(a) Excitation spectra (λem = 652nm), (b) emission spectra (λex = 325nm) and (c) decay curves (λem = 652nm, λex = 325nm) of CaAl4O7: 0.1%Mn4+ at different temperatures as indicated. (d) The temperature dependence of the integrated emission intensities (light green ellipse pattern: “red star” for λex = 325nm; “blue ball” for λex = 470nm) and lifetimes (light blue ellipse pattern: “red star” for λex = 325nm and λem = 652nm; “blue ball” for λex = 470nm and λem = 652nm). The green line through the data points are fits to τ(T) = τ0/(1 + τ0Ce-Ea/kT) with τ0 = 1435μs, C = 1.47, and Ea = 0.196eV. The goodness of fitting is 96.0%.

Metrics