Abstract

We report on theoretical and experimental investigation of azimuthal and longitudinal modes in rolled-up microtubes at telecom wavelengths. These microtubes are fabricated by selectively releasing a coherently strained InGaAs/GaAs bilayer. We apply planar waveguide method and a quasi-potential model to analyze the azimuthal and longitudinal modes in the microtubes near 1550 nm. Then we demonstrate these modes in transmission spectrum by evanescent light coupling. The experimental observations agree well with the calculated results. Surface-scattering-induced mode splitting is also observed in both transmission and reflection spectra at ~1600 nm. The mode splitting is in essence the non-degeneracy of clockwise and counter-clockwise whispering-gallery modes of the microtubes. This study is significant for understanding the physics of modes in microtubes and other microcavities with three-dimensional optical confinement, as well as for potential applications such as microtube-based photonic integrated devices and sensing purposes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
    [CrossRef]
  2. O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
    [CrossRef] [PubMed]
  3. O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
    [CrossRef]
  4. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
    [CrossRef] [PubMed]
  5. X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D41(19), 193001 (2008).
    [CrossRef]
  6. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
    [CrossRef]
  7. Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
    [CrossRef]
  8. F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
    [CrossRef] [PubMed]
  9. F. Li and Z. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009).
    [CrossRef] [PubMed]
  10. I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
    [CrossRef]
  11. P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
    [CrossRef]
  12. J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
    [CrossRef]
  13. Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011).
    [CrossRef] [PubMed]
  14. S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
    [CrossRef]
  15. S. Bhowmick, T. Frost, and P. Bhattacharya, “Quantum dot rolled-up microtube optoelectronic integrated circuit,” Opt. Lett.38(10), 1685–1687 (2013).
    [CrossRef]
  16. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
    [CrossRef]
  17. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
    [CrossRef] [PubMed]
  18. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
    [CrossRef] [PubMed]
  19. V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
    [CrossRef]
  20. Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
    [CrossRef] [PubMed]
  21. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  22. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
    [CrossRef] [PubMed]
  23. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
    [CrossRef]
  24. Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
    [CrossRef]
  25. Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
    [CrossRef]
  26. Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011).
    [CrossRef] [PubMed]
  27. Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Counter-propagating whispering-gallery-modes of InGaAs/GaAs microtubes,” in CLEO, (Optical Society of America, 2013), paper JTu4A.49.
  28. Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).
  29. S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
    [CrossRef]
  30. S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
    [CrossRef]
  31. T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics4(1), 9–10 (2010).
    [CrossRef]
  32. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
    [CrossRef]
  33. J. C. Palais, Fiber Optics Communications (Pearson/Prentice Hall, 2005).
  34. V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
    [CrossRef] [PubMed]
  35. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc., 1991), Chap. 3.
  36. A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
    [CrossRef] [PubMed]
  37. J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010).
    [CrossRef] [PubMed]
  38. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett.37(9), 1586–1588 (2012).
    [CrossRef] [PubMed]
  39. M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007).
    [CrossRef]

2013

S. Bhowmick, T. Frost, and P. Bhattacharya, “Quantum dot rolled-up microtube optoelectronic integrated circuit,” Opt. Lett.38(10), 1685–1687 (2013).
[CrossRef]

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

2012

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett.37(9), 1586–1588 (2012).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
[CrossRef]

J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
[CrossRef]

S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
[CrossRef]

2011

Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011).
[CrossRef] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

2010

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics4(1), 9–10 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

2009

2008

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D41(19), 193001 (2008).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

2007

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007).
[CrossRef]

2006

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

2003

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

2001

O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

2000

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Adibi, A.

Bassett, K.

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

Benson, O.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Benyoucef, M.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

Bernardi, A.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Bhattacharya, P.

S. Bhowmick, T. Frost, and P. Bhattacharya, “Quantum dot rolled-up microtube optoelectronic integrated circuit,” Opt. Lett.38(10), 1685–1687 (2013).
[CrossRef]

S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
[CrossRef]

J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
[CrossRef]

Bhowmick, S.

S. Bhowmick, T. Frost, and P. Bhattacharya, “Quantum dot rolled-up microtube optoelectronic integrated circuit,” Opt. Lett.38(10), 1685–1687 (2013).
[CrossRef]

S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
[CrossRef]

J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
[CrossRef]

Bianucci, P.

Bolaños Quiñones, V. A.

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Böttner, S.

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

Challa, A.

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

Chehovskiy, A. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Chun, I. S.

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

Dastjerdi, M. H. T.

P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
[CrossRef]

Deneke, Ch.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Ding, F.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

Eberl, K.

O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

Eftekhar, A. A.

Fehringer, S.

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Frost, T.

Gavrilova, T. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Götzinger, S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Gutakovsky, A. K.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010).
[CrossRef] [PubMed]

Heidemeyer, H.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Heitmann, D.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Heo, J.

J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
[CrossRef]

S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
[CrossRef]

Heyn, Ch.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Hosoda, M.

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007).
[CrossRef]

Huang, G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Jin-Phillipp, N. Y.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Jorgensen, M.

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

Kipp, T.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics4(1), 9–10 (2010).
[CrossRef]

Kiravittaya, S.

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Kirk, A. G.

Korn, T.

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Li, F.

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

F. Li and Z. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009).
[CrossRef] [PubMed]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Li, Q.

Li, S.

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

Li, X.

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D41(19), 193001 (2008).
[CrossRef]

Ma, L.

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

Mazzei, A.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Mei, Y.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Mendach, S.

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

Menezes, L. S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Mi, Z.

P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
[CrossRef]

Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011).
[CrossRef] [PubMed]

Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011).
[CrossRef] [PubMed]

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

F. Li and Z. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009).
[CrossRef] [PubMed]

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

Mukherjee, S.

Müller, C.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Nakamura, Y.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Özdemir, S. K.

Plant, D. V.

Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011).
[CrossRef] [PubMed]

Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011).
[CrossRef] [PubMed]

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

Plumhof, J. D.

Poole, P. J.

P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
[CrossRef]

Preobrazhenskii, V. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Prinz, V. Y.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Putyato, M. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Rastelli, A.

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

Rehberg, H.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

Sanchez, S.

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Sauer, M.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Schmidt, O. G.

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

Schüller, C.

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Schultz, C. M.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Seleznev, V. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Shigaki, T.

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007).
[CrossRef]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Solovev, A. A.

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

Songmuang, R.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Stemmann, A.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Strelow, Ch.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Tavakoli Dastjerdi, M. H.

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

Thurmer, D. J.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Tian, Z.

Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express19(13), 12164–12171 (2011).
[CrossRef] [PubMed]

Z. Tian, V. Veerasubramanian, P. Bianucci, Z. Mi, A. G. Kirk, and D. V. Plant, “Selective polarization mode excitation in InGaAs/GaAs microtubes,” Opt. Lett.36(17), 3506–3508 (2011).
[CrossRef] [PubMed]

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Veerasubramanian, V.

Vicknesh, S.

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

Welsch, H.

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Xia, Z.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010).
[CrossRef] [PubMed]

Zapf-Gottwick, R.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

Zhen, H.

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

Zhong, Q.

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express18(23), 23535–23543 (2010).
[CrossRef] [PubMed]

Zumofen, G.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

ACS Nano

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Bhowmick, J. Heo, and P. Bhattacharya, “A quantum dot rolled-up microtube directional coupler,” Appl. Phys. Lett.101(17), 171111 (2012).
[CrossRef]

I. S. Chun, K. Bassett, A. Challa, and X. Li, “Tuning the photo-luminescence characteristics with curvature for rolled-up GaAs quantum well microtubes,” Appl. Phys. Lett.96(25), 251106 (2010).
[CrossRef]

P. Bianucci, S. Mukherjee, M. H. T. Dastjerdi, P. J. Poole, and Z. Mi, “Self-organized InAs/InGaAsP quantum dot tube lasers,” Appl. Phys. Lett.101(3), 031104 (2012).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett.88(11), 111120 (2006).
[CrossRef]

Ch. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Time-resolved studies of a rolled-up semiconductor microtube laser,” Appl. Phys. Lett.95(22), 221115 (2009).
[CrossRef]

V. A. Bolaños Quiñones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection,” Appl. Phys. Lett.101(15), 151107 (2012).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

S. Li, L. Ma, H. Zhen, M. Jorgensen, S. Kiravittaya, and O. G. Schmidt, “Dynamic axial mode tuning in a rolled-up optical microcavity,” Appl. Phys. Lett.101(23), 231106 (2012).
[CrossRef]

S. Böttner, S. Li, M. Jorgensen, and O. G. Schmidt, “Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration,” Appl. Phys. Lett.102(25), 251119 (2013).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett.90(18), 181107 (2007).
[CrossRef]

Chem. Soc. Rev.

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev.40(5), 2109–2119 (2011).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Heo, S. Bhowmick, and P. Bhattacharya, “Threshold characteristics of quantum dot rolled-up micotube lasers,” IEEE J. Quantum Electron.48(7), 927–933 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, and N. Y. Jin-Phillipp, “Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes,” IEEE J. Sel. Top. Quantum Electron.8(5), 1025–1034 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Tian, F. Li, Z. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett.22(5), 311–313 (2010).
[CrossRef]

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Experimental demonstration of counter-propagating whispering-gallery-modes of rolled-up semiconductor microtubes,” IEEE Photon. Technol. Lett. (to be published).

J. Phys. D

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D41(19), 193001 (2008).
[CrossRef]

Nano Lett.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Nat. Photonics

T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics4(1), 9–10 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

O. G. Schmidt and K. Eberl, “Nanotechnology. thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

Ch. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, Ch. Heyn, D. Heitmann, and T. Kipp, “Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators,” Phys. Rev. B85(15), 155329 (2012).
[CrossRef]

Phys. Rev. Lett.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett.99(17), 173603 (2007).
[CrossRef] [PubMed]

Physica E. (Amsterdam)

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E. (Amsterdam)6(1–4), 828–831 (2000).
[CrossRef]

Other

Q. Zhong, Z. Tian, M. H. Tavakoli Dastjerdi, Z. Mi, and D. V. Plant, “Counter-propagating whispering-gallery-modes of InGaAs/GaAs microtubes,” in CLEO, (Optical Society of America, 2013), paper JTu4A.49.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc., 1991), Chap. 3.

J. C. Palais, Fiber Optics Communications (Pearson/Prentice Hall, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of InGaAs/GaAs QD bilayer structure grown on GaAs substrate with AlAs sacrificial layer. (b) Illustration of the U-shaped mesa with corrugations defined along the inner edge. (c) Optical microscopy image of a rolled-up microtube. (d) SEM image showing the engineered microtube surface geometry.

Fig. 2
Fig. 2

(a) Cylindrical coordinates (r, φ, z) defined in microtubes. (b) Unscaled microtube cross section showing the inner/outer edges and two different wall thicknesses. (c) Modified planar waveguide model for studying 2-D modes in the (r, φ) plane of the microtubes.

Fig. 3
Fig. 3

Calculated effective refractive indices of TE1 and TM1 modes at 1550 nm in a planar waveguide with a thickness of 50-300 nm (material refractive index of 3.5).

Fig. 4
Fig. 4

(a) Calculated resonant wavelength of modes with azimuthal order m of 31-34 and longitudinal order v of 0-3. (b) Distributions of the first four order longitudinal modes with azimuthal order m of 32.

Fig. 5
Fig. 5

Experimental setup for characterization of the azimuthal and longitudinal modes in the microtube transmission spectrum. GPIB: general purpose interface bus, PC: polarization controller, MPS: micro-positioning stage.

Fig. 6
Fig. 6

Normalized transmission spectra showing the azimuthal and longitudinal modes of a microtube. Three and four longitudinal modes are shown in (a) and (b), respectively.

Fig. 7
Fig. 7

(a) Normalized transmission spectrum of a separate microtube. (b) Simultaneously measured transmission (blue) and reflection (red) spectra of this microtube. Mode splitting at ~1600 nm is magnified in the right inset. The left lobe of the doublet has a Q-factor of ~2 × 103.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eff1 c 1 + n eff2 c 2 λ m r,ϕ =m,
V(z)=a z 2 +b,
Ψ v (z)=p e q z 2 2 H v (uz),
g ω f 2 2 V m ,

Metrics