Abstract

We propose and demonstrate a novel WDM-CAP-PON based on optical single-side band (OSSB) multi-level multi-band carrier-less amplitude and phase modulation (MM-CAP). To enable high-speed transmission with simplified optical network unit (ONU)-side digital signal processing, 4-level 5 sub-bands CAP-16 is used here, which is generated by the digital to analogue converter (DAC). Optical single-side band (OSSB) technology is applied to extend the transmission distance against the spectrum fading effect. As a proof of concept, the experiment successfully demonstrates 11 WDM channels, 55 sub-bands, for 55 users with 9.3-Gb/s per user (after removing 7% overhead for forward error correction (FEC)) in the downstream over 40-km SMF.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
    [CrossRef]
  2. G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw.1(4), C35–C50 (2009).
    [CrossRef]
  3. J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006).
    [CrossRef]
  4. A. Wiberg, B. Olsson, and P. Andrekson, “Single cycle subcarrier modulation,” in Proc. OFC2009, paper OTuE1.
    [CrossRef]
  5. J. Karout, M. Karlsson, and E. Agrell, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express18(17), 17913–17921 (2010).
    [CrossRef] [PubMed]
  6. J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
    [CrossRef]
  7. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  8. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012).
    [CrossRef]
  9. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Study of 100 Gigabit Ethernet using carrierless amplitude/phase modulation and optical OFDM,” J. Lightwave Technol.31(9), 1367–1373 (2013).
    [CrossRef]
  10. J. D. Ingham, R. Penty, I. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. OFC2011, paper OThZ3.
  11. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
    [CrossRef] [PubMed]
  12. M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
    [CrossRef]
  13. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Proc. of OFC2013, paper PDP5C.10.
  14. J. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. White, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in Proc. of OFC2013, paper OW4A.5.
    [CrossRef]
  15. L. Tao, Y. Wang, Y. Gao, A. P. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express21(5), 6459–6465 (2013).
    [CrossRef] [PubMed]
  16. G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
    [CrossRef]
  17. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  18. J. Zhang, J. Yu, L. Tao, Y. Fang, Y. Wang, Y. Shao, and N. Chi, “Generation of coherent and frequency-lock optical subcarriers by cascading phase modulators driven by sinusoidal sources,” J. Lightwave Technol.30(24), 3911–3917 (2012).
    [CrossRef]

2013 (2)

2012 (4)

N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012).
[CrossRef]

J. Zhang, J. Yu, L. Tao, Y. Fang, Y. Wang, Y. Shao, and N. Chi, “Generation of coherent and frequency-lock optical subcarriers by cascading phase modulators driven by sinusoidal sources,” J. Lightwave Technol.30(24), 3911–3917 (2012).
[CrossRef]

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

2011 (2)

2010 (2)

2009 (1)

2008 (1)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

2006 (1)

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006).
[CrossRef]

1995 (1)

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Agrell, E.

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

J. Karout, M. Karlsson, and E. Agrell, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express18(17), 17913–17921 (2010).
[CrossRef] [PubMed]

Breuer, D.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Chang, G. K.

G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw.1(4), C35–C50 (2009).
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chi, N.

Chien, H. C.

Chowdhury, A.

Cunningham, D. G.

Cvijetic, M.

Cvijetic, N.

Deng, L.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Ellinas, G.

Fang, Y.

Gao, Y.

Geilhardt, F.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Han, S. K.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006).
[CrossRef]

Harman, D. D.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Huang, G.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Huang, M. F.

Huang, Y. K.

Hülsermann, R.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Im, G. H.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Ip, E.

Jensen, J.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Jensen, J. B.

Jia, Z.

Kang, J. M.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006).
[CrossRef]

Karlsson, M.

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

J. Karout, M. Karlsson, and E. Agrell, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express18(17), 17913–17921 (2010).
[CrossRef] [PubMed]

Karout, J.

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

J. Karout, M. Karlsson, and E. Agrell, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express18(17), 17913–17921 (2010).
[CrossRef] [PubMed]

Kind, M.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Lange, C.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Lau, A. P.

Liu, B.

Lu, C.

Mandzik, A. V.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Monath, T.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Monroy, I. T.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
[CrossRef] [PubMed]

Nguyen, M. H.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Othman, M. B.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

Penty, R. V.

Pham, T. T.

Qian, D.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Rodes, R.

Shao, Y.

Siuzdak, J.

Szczerba, K.

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

Tao, L.

Turkiewicz, J.

Wang, T.

Wang, Y.

Wei, J. L.

Weis, E.

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

Werner, J. J.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

White, I. H.

Wieckowski, M.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
[CrossRef] [PubMed]

Xin, X.

Yu, C.

Yu, J.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

D. Breuer, F. Geilhardt, R. Hülsermann, M. Kind, C. Lange, T. Monath, and E. Weis, “Opportunities for next-generation optical access,” IEEE Commun. Mag.49(2), s16– s24 (2011).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. Jensen, and I. T. Monroy, “Experimental investigations of 3D/4D-CAP modulation with DM-VCSELs,” IEEE Photon. Technol. Lett.24(22), 2009–2012 (2012).
[CrossRef]

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(3), 502–504 (2006).
[CrossRef]

IEEE Trans. Inf. Theory (1)

J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory58(7), 4645–4659 (2012).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Other (4)

A. Wiberg, B. Olsson, and P. Andrekson, “Single cycle subcarrier modulation,” in Proc. OFC2009, paper OTuE1.
[CrossRef]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Proc. of OFC2013, paper PDP5C.10.

J. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. White, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in Proc. of OFC2013, paper OW4A.5.
[CrossRef]

J. D. Ingham, R. Penty, I. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical data communication links,” in Proc. OFC2011, paper OThZ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of WDM-CAP-PON based on MM-CAP signal generation and transmission for multi-user access network. (IM: intensity modulation; DD: direct detection, λi is the ith wavelength in the WDM-PON).

Fig. 2
Fig. 2

Schematic diagram of transmitter and receiver based on multi-band CAP for one data stream (data n is the data transmitted in the nth sub-band).

Fig. 3
Fig. 3

(a)~(d) The time domain impulse response of different filter pairs 1~4; (e) The frequency response of the four filter pairs located in different sub-bands.

Fig. 4
Fig. 4

Experimental setup. (WSS: wavelength selective switch; MZM: Mach-Zehnder Modulator; TOF: tunable optical filter; TA: tunable attenuator)

Fig. 5
Fig. 5

The optical spectrum of (a) single channel and (b) 11 channels WDM OSSB MM-CAP signals.

Fig. 6
Fig. 6

The back to back BER results versus receiver optical power for each sub-band.

Fig. 7
Fig. 7

Spectrum of MM-CAP after 40-km SMF for DSB and OSSB signals.

Fig. 8
Fig. 8

(a) The BER of each sub-band in Ch. 4 versus received optical power after 40-km transmission; (b) The required optical power for total 55 sub-bands in 11 channels at the BER of 3.8x10-3 after 40km SMF transmission.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f I n (t)= sin[π(1β) t T s ]+4β t T s cos[π t T s (1+β)] π t T s [1 (4β t T s ) 2 ] sin[π(2n1)(1+β) t T s ]
f Q n (t)= sin[π(1β) t T s ]+4β t T s cos[π t T s (1+β)] π t T s [1 (4β t T s ) 2 ] cos[π(2n1)(1+β) t T s ]
S c (t)= n=1 N [ s I n (t) f I n (t) s Q n (t) f Q n (t)]
r I n (t)= R c (t)m f I n (t), r Q n (t)= R c (t)m f Q n (t)

Metrics