Abstract

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann, “Decay of non-radiative surface plasmons into light on rough silver films: Comparison of experimental and theoretical results,” Opt. Commun.6(2), 185–187 (1972).
    [CrossRef]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
    [CrossRef]
  3. T Allsop, R. Neal, S. Rehman, C. Zhang, D. J. Webb, D. Mapps, and I. Bennion, “Surface Plasmon Resonance Generation Utilising Gratings for Biochemical Sensing,” OFS-18 Cancun Mexico, paper WA4, (2006).
  4. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
    [CrossRef] [PubMed]
  5. R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods200(1-2), 121–133 (1997).
    [CrossRef] [PubMed]
  6. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  7. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Academic, 1997)
  9. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
    [CrossRef] [PubMed]
  10. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
    [CrossRef] [PubMed]
  11. T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
    [CrossRef]
  12. J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
    [CrossRef]
  13. T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).
  14. M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).
  15. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  16. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  17. E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
    [CrossRef]
  18. D. C. Skigin and M. Lester, “Study of resonant modes of a periodic metallic array near a dielectric interface: evanescent-to-propagating coupling via surface plasmon excitation,” J. Opt. A, Pure Appl. Opt.8(3), 259–267 (2006).
    [CrossRef]
  19. S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
    [CrossRef]
  20. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).
  21. D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).
  22. M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
    [CrossRef] [PubMed]
  23. K.-S. Lee and M. A. El-Sayed, “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  24. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]

2012 (1)

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

2008 (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

2007 (4)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
[CrossRef] [PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

2006 (4)

J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
[CrossRef]

D. C. Skigin and M. Lester, “Study of resonant modes of a periodic metallic array near a dielectric interface: evanescent-to-propagating coupling via surface plasmon excitation,” J. Opt. A, Pure Appl. Opt.8(3), 259–267 (2006).
[CrossRef]

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

2005 (2)

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

2004 (4)

E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

2000 (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
[CrossRef] [PubMed]

1997 (1)

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods200(1-2), 121–133 (1997).
[CrossRef] [PubMed]

1991 (1)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
[CrossRef]

1972 (1)

E. Kretschmann, “Decay of non-radiative surface plasmons into light on rough silver films: Comparison of experimental and theoretical results,” Opt. Commun.6(2), 185–187 (1972).
[CrossRef]

Ainslie, B. J.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Allsop, T.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

Arai, T.

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

Armitageand, J. R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Arsova, D.

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

Awazu, K.

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

Bennion, I.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

Biener, J.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Chang, C. A.

J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
[CrossRef]

Chyan, J. Y.

J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
[CrossRef]

Corn, R. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
[CrossRef] [PubMed]

Ctyroký, J.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

Culverhouse, P. F.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Davey, S. T.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Dedryvere, R.

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Eliza, J.

E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Fält, A.

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods200(1-2), 121–133 (1997).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gonbeau, D.

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Hamza, A. V.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Hayes, J. R.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Huser, T.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Hutter, E.

E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Kalli, K.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Karlsson, R.

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods200(1-2), 121–133 (1997).
[CrossRef] [PubMed]

Kashyap, R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann, “Decay of non-radiative surface plasmons into light on rough silver films: Comparison of experimental and theoretical results,” Opt. Commun.6(2), 185–187 (1972).
[CrossRef]

Kucheyev, S. O.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Kumar, P. K. R.

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Lester, M.

D. C. Skigin and M. Lester, “Study of resonant modes of a periodic metallic array near a dielectric interface: evanescent-to-propagating coupling via surface plasmon excitation,” J. Opt. A, Pure Appl. Opt.8(3), 259–267 (2006).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
[CrossRef]

Maniková, Z.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

Mapps, D.

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Mou, C.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Neal, R.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
[CrossRef]

Pamukchieva, V.

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

Piliarik, M.

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

Rehman, S.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

Rockstuhl, C.

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

Saied, S.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Skigin, D. C.

D. C. Skigin and M. Lester, “Study of resonant modes of a periodic metallic array near a dielectric interface: evanescent-to-propagating coupling via surface plasmon excitation,” J. Opt. A, Pure Appl. Opt.8(3), 259–267 (2006).
[CrossRef]

Skordeva, E.

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

Sullivan, J. L.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
[CrossRef] [PubMed]

Talley, C. E.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Tominaga, J.

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Webb, D. J.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt.46(22), 5456–5460 (2007).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Williams, D. L.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Yeh, J. A.

J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

E. Hutter, J. Eliza, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultra-thin Organic Films,” Annu. Rev. Phys. Chem.51(1), 41–63 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett.89(5), 053102 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007).
[CrossRef] [PubMed]

J. Immunol. Methods (1)

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods200(1-2), 121–133 (1997).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (2)

T. Arai, P. K. R. Kumar, C. Rockstuhl, K. Awazu, and J. Tominaga, “An optical biosensor based on localized surface plasmon resonance of silver nanostructured films,” J. Opt. A, Pure Appl. Opt.9(7), 699–703 (2007).
[CrossRef]

D. C. Skigin and M. Lester, “Study of resonant modes of a periodic metallic array near a dielectric interface: evanescent-to-propagating coupling via surface plasmon excitation,” J. Opt. A, Pure Appl. Opt.8(3), 259–267 (2006).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

D. Gonbeau, V. Pamukchieva, R. Dedryvere, E. Skordeva, and D. Arsova, “Photoinduced changes in the valence band states GeXAs40-XS60 of thin films,” J. Optoelectron. Adv. Mater.7(1), 341–344 (2005).

J. Phys. Chem. B (2)

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

J. Quantum Electron. (1)

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” J. Quantum Electron.48(3), 394–405 (2012).

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Y. Chyan, C. A. Chang, and J. A. Yeh, “Development and characterization of a broad-bandwidth polarization-insensitive sub-wavelength optical device,” Nanotechnology17(1), 40–44 (2006).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Kretschmann, “Decay of non-radiative surface plasmons into light on rough silver films: Comparison of experimental and theoretical results,” Opt. Commun.6(2), 185–187 (1972).
[CrossRef]

Proc. Soc. Photo Opt. Instrum. Eng. (1)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitageand, and B. J. Ainslie, “UV spectroscopy of optical fibres and performs,” Proc. Soc. Photo Opt. Instrum. Eng.1516, 29 (1991).

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators3, 79–88 (1982).
[CrossRef]

Sens. Actuators B Chem. (1)

M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem.90, 236–242 (2004).

Other (2)

T Allsop, R. Neal, S. Rehman, C. Zhang, D. J. Webb, D. Mapps, and I. Bennion, “Surface Plasmon Resonance Generation Utilising Gratings for Biochemical Sensing,” OFS-18 Cancun Mexico, paper WA4, (2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Academic, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Scheme used for the characterization of the devices, (b) representation of the construction of UV processed coating (c) schematic of the alignment of coated D-shaped fiber.

Fig. 2
Fig. 2

A three dimensional view showing the surface topology of the flat of the D-shaped, platinum coated device obtained using AFM.

Fig. 3
Fig. 3

Images and topological data of the post UV-laser processed platinum device: (a) an AFM image; (b) a visible microscope image with a magnified insert; (c) a line profile across the surface of the device; (d) a typical profile of a single corrugation.

Fig. 4
Fig. 4

A fast Fourier transform (FFT) of the typical AFM line profile of the post-UV processed multi-layered fiber.

Fig. 5
Fig. 5

(a) The observed spectral changes of the Pt-SPR fiber device during UV processing. (b) The spectral behavior of the predominant spectral features as a function of the UV energy delivered to the fiber. (c) The change in background coupling after each UV exposure.

Fig. 6
Fig. 6

The spectral behavior of the predominant spectral features as a function of the UV energy delivered to the gold coated device. (a) The mean change in coupling after each UV exposure. (b) The wavelength shift of the centroid of the main spectral feature.

Fig. 7
Fig. 7

(a) The spectral transmission profiles for increasing index of the surrounding medium. The spectral characteristics of the Pt-SiO2-Ge SPR fiber device as a function of index prior to UV processing: (b) change in optical strength and (c) shift in central wavelength of the spectral feature.

Fig. 8
Fig. 8

(a) The spectral transmission profiles for increasing index of the surrounding medium. The spectral characteristics of the UV-processed Pt-SiO2-Ge SPR fiber device as a function of index: (b) change in optical strength and (c) shift in central wavelength of the spectral feature.

Fig. 9
Fig. 9

The observed surface plasmon resonances obtained at different wavelengths by varying polarization state of the illuminating light for the device consisting of (a) Pt-SiO2-Ge and (b) Au-SiO2-Ge, both with a surrounding refractive index of 1.36.

Fig. 10
Fig. 10

The variation in central wavelength and coupling efficiency of the SPR as a function of change of polarization azimuth at the polarization controller. The angle is measured from the point of maximum coupling strength. The data relate to an Au-SiO2-Ge coated device (a) before (1370nm center of spectral feature) and (b) after UV processing (1350nm center of spectral feature)

Fig. 11
Fig. 11

(a) The theoretically predicted - surface plasmon resonances condition as a function of refractive index for a Pt-SiO2-Ge coated device with the spatial lattices given by the FFT of Fig. 8 and with the scattering integer order (i = 1). This is only showing the coupling with the HE1,1 mode. (b) Another example of LSP device, Ag-SiO2-Ge coated.

Tables (1)

Tables Icon

Table 1 A summary of the spectral behavior of the surface plasmon resonance fiber devices as a function of azimuthal polarization of the illuminating light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β=k ( ε m n s 2 ε m + n s 2 )

Metrics