Abstract

We present a method for fabricating high aspect ratio metal-oxide, sub-wavelength grating structures. These “nano-hair” structures are composed of alumina cylindrical pillars, partially embedded in a supporting fused silica substrate. The fabricated nano-hair structures demonstrate phase control of the transmitted beam while maintaining a peak transmitted power greater than 93% around a central wavelength of λo = 1.55 µm. Based on this principle, discrete and continuous phase functions can be encoded by controlling the lithographic process.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
    [CrossRef]
  2. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).
  3. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett.16(24), 1921–1923 (1991).
    [CrossRef] [PubMed]
  4. H. Haidner, J. T. Sheridan, and N. Streibl, “Dielectric binary blazed gratings,” Appl. Opt.32(22), 4276–4278 (1993).
    [CrossRef] [PubMed]
  5. F. T. Chen and H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett.20(2), 121–123 (1995).
    [CrossRef] [PubMed]
  6. C. Zhang, S. Liu, T. Shi, and Z. Tang, “Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry,” J. Opt. Soc. Am. A28(2), 263–271 (2011).
    [CrossRef] [PubMed]
  7. C. Sauvan, P. Lalanne, and M. S. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett.29(14), 1593–1595 (2004).
    [CrossRef] [PubMed]
  8. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express18(13), 13444–13450 (2010).
    [CrossRef] [PubMed]
  9. B. Wang, X. P. Zhang, W. J. Song, P. Cui, Y. Zhang, and G. T. Fei, “Fabrication of transmission phase gratings on porous anodic alumina,” Opt. Lett.35(5), 727–729 (2010).
    [CrossRef] [PubMed]
  10. W. Freese, T. Kämpfe, E. B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett.35(5), 676–678 (2010).
    [CrossRef] [PubMed]
  11. F. T. Chen and H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett.21(3), 177–179 (1996).
    [CrossRef] [PubMed]
  12. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett.25(6), 381–383 (2000).
    [CrossRef] [PubMed]
  13. G. Bloom, C. Larat, E. Lallier, M. S. Lee-Bouhours, B. Loiseaux, and J. P. Huignard, “Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves,” Appl. Opt.50(5), 701–709 (2011).
    [CrossRef] [PubMed]
  14. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12(2), 333–339 (1995).
    [CrossRef]
  15. C. H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett.36(12), 2354–2356 (2011).
    [CrossRef] [PubMed]
  16. P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
    [CrossRef] [PubMed]
  17. A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt.40(13), 2068–2075 (2001).
    [CrossRef] [PubMed]
  18. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, 1998).
  19. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
    [CrossRef]
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  21. A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
    [CrossRef]
  22. P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

2013

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

2011

2010

2009

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
[CrossRef] [PubMed]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

2008

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
[CrossRef]

2004

2001

2000

1996

1995

1993

1991

1985

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

1981

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).

Barbastathis, G.

Bloom, G.

Carl, S. R.

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

Chang, C. H.

Chen, F. T.

Choi, H. J.

Craighead, H. G.

Cui, P.

Dial, O.

Dominguez-Caballero, J. A.

Fei, G. T.

Freese, W.

Gao, X.

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

Grann, E. B.

Haidner, H.

Huignard, J. P.

Hyvärinen, H. J.

Johnson, E. G.

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
[CrossRef] [PubMed]

Kämpfe, T.

Karvinen, P.

Kipfer, P.

Kleemann, B. H.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
[CrossRef]

Kley, E. B.

Lalanne, P.

Lallier, E.

Larat, C.

Lee, M. S.

Lee-Bouhours, M. S.

Liu, S.

Loiseaux, B.

Lopez, A. G.

Mait, J. N.

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

Pommet, D. A.

Poutous, M. K.

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
[CrossRef] [PubMed]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

Prather, D. W.

Pung, A. J.

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

Roth, Z. A.

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
[CrossRef] [PubMed]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

Rumpf, R. C.

Ruoff, J.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).

Sauvan, C.

Scherer, A.

Seesselberg, M.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
[CrossRef]

Sheridan, J. T.

Shi, T.

Song, W. J.

Srimathi, I. R.

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

Srinivasan, P.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009).
[CrossRef] [PubMed]

Stork, W.

Streibl, N.

Tang, Z.

Tünnermann, A.

Turunen, J.

Varga, M. G.

Wang, B.

Yilmaz, Y. O.

Zhang, C.

Zhang, X. P.

Zhang, Y.

Appl. Opt.

IEEE Photon. Technol. Lett.

A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008).
[CrossRef]

J. Micro/Nanolith. MEMS-MOEMS

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. IEEE

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).

Other

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed structure of the optical nano-hairs; Λ is the period of the subwavelength grating, hb is the height of the pillars embedded in the substrate, and ha is the height of the pillars above the substrate..

Fig. 2
Fig. 2

RCWA simulations at λo = 1.55 µm of (left) peak transmittance, and (right) phase variation with fill fraction at normal incidence.

Fig. 3
Fig. 3

Field profile in the optical nano-hair structure for the 0.58 duty cycle case showing confinement of the fields in the pillars. Illumination is at normal incidence.

Fig. 4
Fig. 4

(a) A step phase plate with azimuthally alternating N phase sections, and (b) Proposed nano-hair geometry to mimic the phase function of the optical element in (a).

Fig. 5
Fig. 5

Illustration of the fabrication sequence. (a) Chrome coated fused silica substrate, (b) Patterned photoresist on the substrate, (c) Photoresist pattern transferred to the chrome layer, (d) Grating patterns transferred to the substrate using an oxide etcher, (e) Alumina deposited on the patterned substrate using an ALD, (f) Planar alumina on top of the structure etched using a III-V etcher, and (g) Fused silica etched around the filled alumina holes finally forming the optical nano-hair structures.

Fig. 6
Fig. 6

Top-down scanning electron micrograph of the proposed optical nano-hair structure at (a) 2000X, and (b) 6000X magnification.

Fig. 7
Fig. 7

(a) Simulated far field diffraction pattern for the optical necklace beam at λo = 1.55 µm, and (b) Experimentally measured far field diffraction pattern at λo = 1.55 µm of optical nano-hair structures using an IR camera on structures corresponding to a phase shift of 0.90π.

Fig. 8
Fig. 8

Top-down scanning electron micrograph of the optical nano-hair structure with wedges representing the fill fraction variation at (a) 1100X, and (b) 5000X.

Fig. 9
Fig. 9

SEM micrograph of the fabricated alumina optical nano-hair structures on a fused silica substrate. The dielectric pillars are clearly visible and the height was measured to be 1.90 µm. The fill fraction variation is also distinctly seen.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ= n ¯ k o d= n ¯ 1 k 0 h a + n ¯ 2 k 0 h b .
Λ< λ o max( n c , n s ) .
Φ(m)= (1) m ; 2π N θ 2π N (m+1), ; m=0,...,(N1).

Metrics