Abstract

We demonstrate a tunable multi-wavelength Brillouin-Raman fiber laser with 20 GHz wavelength spacing. The setup is arranged in a linear cavity by employing 7.2 and 11 km dispersion compensating fibers (DCF) in addition to a 30 cm Bismuth-oxide erbium doped fiber. In this experiment, for the purpose of increasing the Stokes lines, it is necessary to optimize Raman pump power and Brillouin pump power together with its corresponding wavelengths. At the specific Brillouin pump wavelength, it is found that the longer length of 11 km DCF with optimized parameters results in larger number of Stokes combs and optical signal to noise ratios (OSNRs). In this case, a total of 195 Brillouin Stokes combs are produced across 28 nm bandwidth at Brillouin pump power of −2 dBm and Raman pump power of 1000 mW. In addition, all Brillouin Stokes signals exhibit an average OSNR of 26 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett.10(7), 958–960 (1998).
    [CrossRef]
  2. Y.-G. Han, T. V. A. Tran, S.-H. Kim, and S. B. Lee, “Multi-wavelength Raman fiber laser based long distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett.30(11), 1282–1284 (2005).
    [CrossRef] [PubMed]
  3. S. Pan and J. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express17(14), 12167–12173 (2009).
    [CrossRef] [PubMed]
  4. J. Marshall, G. Stewart, and G. Whitenett, “Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy,” Meas. Sci. Technol.17(5), 1023–1031 (2006).
    [CrossRef]
  5. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express17(8), 5944–5952 (2009).
    [CrossRef] [PubMed]
  6. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express13(1), 142–147 (2005).
    [CrossRef] [PubMed]
  7. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multi-wavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
    [CrossRef] [PubMed]
  8. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007).
    [CrossRef] [PubMed]
  9. A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
    [CrossRef]
  10. S. Pan, C. Lou, and Y. Gao, “Multi-wavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express14(3), 1113–1118 (2006).
    [CrossRef] [PubMed]
  11. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
    [CrossRef]
  12. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett.31(7), 918–920 (2006).
    [CrossRef] [PubMed]
  13. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
    [CrossRef] [PubMed]
  14. Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
    [CrossRef]
  15. N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).
  16. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems, G. Agrawal ed. (Academic Press, 2005).
  17. S. Ohara and Y. Kuroiwa, “Highly ytterbium-doped bismuth-oxide-based fiber,” Opt. Express17(16), 14104–14108 (2009).
    [CrossRef] [PubMed]
  18. S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
    [CrossRef]
  19. A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009).
    [CrossRef] [PubMed]

2011 (2)

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multi-wavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
[CrossRef] [PubMed]

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

2010 (1)

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

2009 (4)

2008 (1)

Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
[CrossRef]

2007 (1)

2006 (3)

2005 (2)

2002 (2)

A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
[CrossRef]

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

1998 (1)

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett.10(7), 958–960 (1998).
[CrossRef]

Ahmad, A.

Ahmad, H.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Ajiya, M.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express17(8), 5944–5952 (2009).
[CrossRef] [PubMed]

Al-Mansoori, M. H.

Arof, H.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Bakar, A. A. A.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

Benito, D.

A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
[CrossRef]

Chang, J.-S.

Chen, T.

Cheng, X. S.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Dong, X.

Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
[CrossRef]

Emami, S. D.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Gao, Y.

Hambali, N. A. M. A.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

Han, Y.-G.

Harun, S. W.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Hitam, S.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express17(8), 5944–5952 (2009).
[CrossRef] [PubMed]

Huang, T.

Islam, M. S.

José Garde, M.

A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
[CrossRef]

Kim, P.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Kim, S.-H.

Korotky, S. K.

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett.10(7), 958–960 (1998).
[CrossRef]

Kuroiwa, Y.

Lee, J.-H.

Lee, S. B.

Liu, X.

Liu, Y.

Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
[CrossRef]

Loayssa, A.

A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
[CrossRef]

Lou, C.

Lu, C.

Lu, F.

Mahdi, M. A.

Marshall, J.

J. Marshall, G. Stewart, and G. Whitenett, “Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy,” Meas. Sci. Technol.17(5), 1023–1031 (2006).
[CrossRef]

Md Ali, M. I.

Min, B.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Mohamad, R.

Mokhtar, M.

Ng, J.

Ohara, S.

Pan, S.

Park, K.-D.

Park, N.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Parvizi, A.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Parvizi, R.

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Samsuri, N. M.

Stewart, G.

J. Marshall, G. Stewart, and G. Whitenett, “Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy,” Meas. Sci. Technol.17(5), 1023–1031 (2006).
[CrossRef]

Sun, J.

Tang, J.

Tran, T. V. A.

Veselka, J. J.

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett.10(7), 958–960 (1998).
[CrossRef]

Wang, D.

Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
[CrossRef]

Whitenett, G.

J. Marshall, G. Stewart, and G. Whitenett, “Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy,” Meas. Sci. Technol.17(5), 1023–1031 (2006).
[CrossRef]

Yang, X.

Yao, J.

Zamzuri, A. K.

Zhao, L.

Zhou, X.

Zhou, Y.

IEEE Photon. Technol. Lett. (2)

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photon. Technol. Lett.10(7), 958–960 (1998).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Laser Phys. (1)

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1–5 (2011).

Meas. Sci. Technol. (1)

J. Marshall, G. Stewart, and G. Whitenett, “Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy,” Meas. Sci. Technol.17(5), 1023–1031 (2006).
[CrossRef]

Opt. Commun. (1)

Y. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Opt. Commun.281(21), 5400–5404 (2008).
[CrossRef]

Opt. Express (8)

A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009).
[CrossRef] [PubMed]

S. Ohara and Y. Kuroiwa, “Highly ytterbium-doped bismuth-oxide-based fiber,” Opt. Express17(16), 14104–14108 (2009).
[CrossRef] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express17(8), 5944–5952 (2009).
[CrossRef] [PubMed]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express13(1), 142–147 (2005).
[CrossRef] [PubMed]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multi-wavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
[CrossRef] [PubMed]

A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007).
[CrossRef] [PubMed]

S. Pan and J. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express17(14), 12167–12173 (2009).
[CrossRef] [PubMed]

S. Pan, C. Lou, and Y. Gao, “Multi-wavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express14(3), 1113–1118 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002).
[CrossRef]

Opt. Laser Technol. (1)

S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, and H. Ahmad, “Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier,” Opt. Laser Technol.42(5), 790–793 (2010).
[CrossRef]

Opt. Lett. (3)

Other (1)

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems, G. Agrawal ed. (Academic Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for a multi-wavelength BRFL where the hybrid DCF-Bi-EDF gains media is shown in the blue-dashed box.

Fig. 2
Fig. 2

Illustrations of multi-wavelength lasing spectra at different DCF lengths (a) and (c). The magnified views are shown in graphs (b) and (d) where their colors correspond to the relevant fiber lengths (BP wavelength = 1555 nm, BP power = 8 dBm and RPU power = 1 W).

Fig. 3
Fig. 3

Number of output channels versus RPU power at different DCF lengths, the BP wavelength is maintained at 1555 nm and the BP power is set to 8, 4 and −2 dBm.

Fig. 4
Fig. 4

Variations of spectral tuning range and Stokes count by increasing the BP wavelengths. The RPU and BP powers are fixed at 1000 mW and −2 dBm, respectively at different DCF lengths.

Fig. 5
Fig. 5

OSNR variations against the BP wavelength increment, RPU power = 1000 mW and BP power = −2 dBm.

Fig. 6
Fig. 6

Tunability of the multi-wavelength BRFL, the RPU power = 1000 mW and BP power = −2 dBm. The DCF length is extended from (a) 7.2 km to (b) 11 km.

Fig. 7
Fig. 7

Spectra of multi-wavelength BRFL with different lengths of DCF and insets are the enlarged view of the Brillouin Stokes lines at various fiber lengths. (RPU power = 1000 mW, BP power = −2 dBm, BP wavelength = 1555 nm).

Metrics