Abstract

We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 1011 is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
    [CrossRef] [PubMed]
  2. H. S. Margolis, “Frequency metrology and clocks,” J. Phys. B: At. Mol. Opt.42(15), 154017 (2009).
    [CrossRef]
  3. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
    [CrossRef]
  4. C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
    [CrossRef]
  5. B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
    [CrossRef]
  6. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
    [CrossRef] [PubMed]
  7. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
    [CrossRef] [PubMed]
  8. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
    [CrossRef] [PubMed]
  9. K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
    [CrossRef]
  10. M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
    [CrossRef] [PubMed]
  11. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
    [CrossRef] [PubMed]
  12. D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
    [CrossRef] [PubMed]
  13. C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
    [CrossRef] [PubMed]
  14. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
    [CrossRef] [PubMed]
  15. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
    [CrossRef] [PubMed]
  16. V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
    [CrossRef]
  17. V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
    [CrossRef]
  18. N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
    [CrossRef] [PubMed]
  19. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992).
    [CrossRef] [PubMed]
  20. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
    [CrossRef]
  21. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
    [CrossRef]
  22. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
    [CrossRef]
  23. S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011).
    [CrossRef] [PubMed]
  24. S.-W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett.37(18), 3861–3863 (2012).
    [CrossRef] [PubMed]
  25. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
    [CrossRef]
  26. P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
    [CrossRef]
  27. M. H. Levitt, “Composite pulses,” Prog. Nucl. Mag. Res. Sp.18(2), 61–122 (1986).
    [CrossRef]
  28. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999).
    [CrossRef]
  29. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
    [CrossRef]
  30. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
    [CrossRef]
  31. R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
    [CrossRef] [PubMed]
  32. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
    [CrossRef]
  33. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
    [CrossRef] [PubMed]
  34. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008).
    [CrossRef] [PubMed]
  35. F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
    [CrossRef] [PubMed]
  36. P. Gill, W. Murray, and M. H. Wright, Practical Optimization (Emerald, 1982).
  37. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).
    [CrossRef]
  38. B. Abraham and J. Ledolter, Statistical Methods for Forecasting (Wiley, 1983).
  39. G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
    [CrossRef] [PubMed]
  40. S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
    [CrossRef]
  41. S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett.36(7), 1275–1277 (2011).
    [CrossRef] [PubMed]

2013 (3)

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
[CrossRef]

2012 (3)

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

S.-W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett.37(18), 3861–3863 (2012).
[CrossRef] [PubMed]

2011 (2)

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011).
[CrossRef] [PubMed]

S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett.36(7), 1275–1277 (2011).
[CrossRef] [PubMed]

2010 (2)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

2009 (2)

H. S. Margolis, “Frequency metrology and clocks,” J. Phys. B: At. Mol. Opt.42(15), 154017 (2009).
[CrossRef]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
[CrossRef]

2008 (3)

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

2006 (3)

V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
[CrossRef]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

2005 (2)

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

2004 (5)

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

2003 (3)

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

2001 (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

1999 (3)

A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999).
[CrossRef]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

1998 (1)

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

1997 (1)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
[CrossRef]

1992 (1)

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992).
[CrossRef] [PubMed]

1991 (1)

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

1986 (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Mag. Res. Sp.18(2), 61–122 (1986).
[CrossRef]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).
[CrossRef]

Acton, M.

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Amini, J.

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Barrett, M.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Barrett, M. D.

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

Barter, O.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

Becher, C.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Benhelm, J.

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

Bergquist, J. C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

Blatt, R.

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008).
[CrossRef] [PubMed]

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Blatt, S.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Blinov, B. B.

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

Bordé, C. J.

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

Bouyer, P.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
[CrossRef]

Bowler, R.

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Boyd, M. M.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Brickman, K.-A.

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Britton, J.

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Britton, J. W.

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Chiaverini, J.

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

Chien, H.-C.

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011).
[CrossRef] [PubMed]

Chiow, S.-W.

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Chu, S.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992).
[CrossRef] [PubMed]

Chuang, I. L.

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

Chung, K. Y.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Chwalla, M.

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

DeMarco, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Deslauriers, L.

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Deuschle, T.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Dilley, J.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

Eschner, J.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Foreman, S. M.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Gill, P.

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
[CrossRef]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

Gulde, S.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
[CrossRef]

Häffner, H.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Haljan, P. C.

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Hänsel, W.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

Haritos, K. G.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).
[CrossRef]

Helmcke, J.

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Hogan, J. M.

Holleczek, A.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Huntemann, N.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Ido, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Itano, W. M.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

Ivanov, S. S.

S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
[CrossRef]

S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett.36(7), 1275–1277 (2011).
[CrossRef] [PubMed]

James, D. F. V.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

Jelenkovic, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Jost, J. D.

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

Kasevich, M.

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992).
[CrossRef] [PubMed]

Kasevich, M. A.

S.-W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett.37(18), 3861–3863 (2012).
[CrossRef] [PubMed]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011).
[CrossRef] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
[CrossRef]

Kim, K.

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

Kirchmair, G.

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

Kisters, Th.

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

Knill, E.

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

Koelemeij, J. C. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Körber, T. W.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

Korolkova, N. V.

S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
[CrossRef]

Kovachy, T.

Kuhn, A.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Lancaster, G. P. T.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Langer, C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Lee, P. J.

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Leibfried, D.

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Letchumanan, V.

V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
[CrossRef]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Mag. Res. Sp.18(2), 61–122 (1986).
[CrossRef]

Lipphardt, B.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Lucas, D.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Ludlow, A. D.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Margolis, H. S.

H. S. Margolis, “Frequency metrology and clocks,” J. Phys. B: At. Mol. Opt.42(15), 154017 (2009).
[CrossRef]

McGuirk, J. M.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

Meyer, V.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Mølmer, K.

A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999).
[CrossRef]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

Nägerl, H. C.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Nisbet-Jones, P. B. R.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Okhapkin, M.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Ozeri, R.

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

Peik, E.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Peters, A.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
[CrossRef]

Rempe, G.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Riebe, M.

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Riehle, F.

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

Riis, E.

V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
[CrossRef]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

Rohde, H.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Roos, C.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Roos, C. F.

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

Rosenband, T.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Sawyer, B. C.

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Schaetz, T.

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

Schmidt, P. O.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

Schmidt-Kaler, F.

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
[CrossRef]

See, P.

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

Sinclair, A. G.

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006).
[CrossRef]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

Snadden, M. J.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

Sørensen, A.

A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999).
[CrossRef]

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Taichenachev, A. V.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Tamm, C.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Vitanov, N. V.

S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
[CrossRef]

S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett.36(7), 1275–1277 (2011).
[CrossRef] [PubMed]

Warring, U.

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

Wilpers, G.

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

Wineland, D.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008).
[CrossRef] [PubMed]

Wineland, D. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

Witte, A.

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

Ye, J.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

Yudin, V. I.

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

Zeiger, T.

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

Zelevinsky, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. (1)

H. S. Margolis, “Frequency metrology and clocks,” J. Phys. B: At. Mol. Opt.42(15), 154017 (2009).
[CrossRef]

Metrologia (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Nat. Nanotechnol. (1)

G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012).
[CrossRef] [PubMed]

Nat. Phys. (2)

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008).
[CrossRef]

Nature (8)

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008).
[CrossRef] [PubMed]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003).
[CrossRef] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003).
[CrossRef] [PubMed]

S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003).
[CrossRef] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010).
[CrossRef] [PubMed]

M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004).
[CrossRef] [PubMed]

M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004).
[CrossRef] [PubMed]

C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006).
[CrossRef] [PubMed]

New J. Phys. (2)

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013).
[CrossRef]

S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (3)

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004).
[CrossRef]

J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008).
[CrossRef]

K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005).
[CrossRef]

Phys. Rev. Lett. (10)

C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999).
[CrossRef]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012).
[CrossRef] [PubMed]

M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999).
[CrossRef]

F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991).
[CrossRef] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998).
[CrossRef]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997).
[CrossRef]

S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011).
[CrossRef] [PubMed]

A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999).
[CrossRef]

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).
[CrossRef]

Prog. Nucl. Mag. Res. Sp. (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Mag. Res. Sp.18(2), 61–122 (1986).
[CrossRef]

Quant. Inform. Process. (1)

B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013).
[CrossRef] [PubMed]

Science (3)

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006).
[CrossRef] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005).
[CrossRef] [PubMed]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004).
[CrossRef] [PubMed]

Other (2)

B. Abraham and J. Ledolter, Statistical Methods for Forecasting (Wiley, 1983).

P. Gill, W. Murray, and M. H. Wright, Practical Optimization (Emerald, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the optical layout, RF system, and test measurement setup. Light from the injection-locked power laser at 674 nm is switched by two AOMs, which also facilitate phase, amplitude and frequency control. The RF system enables agile control of these parameters via a digital synthesizer driving AOM1, as well as the generation of a bichromatic light field via analog synthesizers driving AOM2. The test measurement setup enables routine measurements of the modulated light field. All RF sources are phase locked to a 10 MHz reference signal (not shown). RF switches extinguish signals to the AOMs and change between single-frequency and bichromatic operation. M, RF mixer; PS, RF power splitter; 2 × 2 FC, 2 × 2 fiber coupler; PD, 1 GHz photodiode; FC, fiber collimator; CM, compact mirror; PMF, polarization maintaining fiber; R, right-angled prism (retroreflector).

Fig. 2
Fig. 2

A single-shot measurement of a phase step δϕ = π. (a) Two fits (red) to the data (black), on either side of the phase step, are used to calculate δϕ. The central 1 µs of the trace is ignored in the fitting procedure. (b) A zoomed-in version of the same data (black) with the fit from before the phase step extended throughout (red), including δϕ = π at the programmed switching time (t = 0).

Fig. 3
Fig. 3

(a) Measured phase change (δϕ measured ) as a function of the programmed value (δθ programmed ) from 0 to 2π rad in increments of π/50 rad, where each data point is the average of 25 single-shot measurements. The fitted gradient is 1.00086(2), indicating accurate phase control over the full range. The error bars are smaller than the data points in this plot. (b) A higher resolution measurement, in increments of 10 mrad, with each data point representing the average of 45 single-shot measurements. The fitted gradient is 1.000(5), indicating accurate control at this fine resolution.

Fig. 4
Fig. 4

After the calibration routine to compensate for non-linear response of the AOM, the optical power from the test fiber output (Pmeas) was measured as a function of the programmed optical power (Pprog). Both powers were scaled to the maximum power available from the test fiber (Pmax), and the measured waveform consists of 3236 samples. (a) The linear fit (red) to the data (black) yields a gradient of 0.99938(2). (b) The same data and fit are presented in a log-log plot, showing that deviation from linear behavior is only significant at powers at least 20 dB below the peak power.

Fig. 5
Fig. 5

Data (black, average of 200 single-shot measurements) and fit (red) of a measured Blackman pulse of duration 2T = 500 µs. The data points are recorded at intervals of 0.224 μs and the fit is of the form E2(t) (see Eq. (1)). The optical power recorded from the test fiber output (Pmeas) is scaled to the maximum power available (Pmax = 100 μW). The data and fits are plotted with the measured power axis on (a) a linear, and (b) a logarithmic scale. The latter shows the fit deviates from the data at low powers and settles completely at the noise floor of the measurement.

Fig. 6
Fig. 6

Accurate Blackman pulse shapes are produced with durations varying over six orders of magnitude: (a) 500 ns, (b) 50 µs, (c) 5 ms and (d) 500 ms. The COD fitting parameter is > 0.99992 for each. To record (a), it was necessary to increase the optical power to Pmax = 1 mW.

Fig. 7
Fig. 7

The power spectral density distribution of measured optical pulse shapes as determined by a discrete Fourier transform (DFT). A Blackman pulse of duration 2T = 500 μs (black) is compared to a square pulse (blue) of the same duration and the same integrated optical power. The measured power spectral density (Smeas) is quantified with respect to the carrier maximum (Smax). The Blackman pulse exhibits a substantial reduction in Smeas/Smax at the higher Fourier frequencies as expected; quantifying this reduction is limited by the measurement noise floor (independently determined to be −48 dBc, as shown by the dashed line). The DFT of the fit to the Blackman pulse in Fig. 5 is also presented (red) and shows a close match to the DFT of measured pulse above the measurement noise floor. For each DFT, the sample interval was 16 ns and the sample length was 312,505.

Fig. 8
Fig. 8

Switching between single-frequency and bichromatic modes of operation. A 4 MHz beat signal is observed when the system is in bichromatic mode, activated by control signals TTL2 and TTL3. The displayed signal is the average of 39 single-shot measurements. The noise features (at 1.4, 2.4 and 3.4 μs) are due to pick up of the TTL control signal in the measurement process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = { E 0 [ 0.42 0.5 cos ( π t / T ) + 0.08 cos ( 2 π t / T ) ] for 0 t 2 T 0 elsewhere .

Metrics