Abstract

We present a novel optical approach to measure the volume scattering function (VSF) by image detection. The instrument design, based upon a combination of two reflectors, uses a unique measurement principle and allows the rapid simultaneous determination of scattering at a wide range of angles. The advantages of the newly developed scattering meter are that: 1) it can determine the scattering function from 8° to 172° at 1° intervals without changing the sensitivity of the detector, without moving any optical parts, and can do so within a few seconds, 2) the unique optical design facilitates determination of the spectral VSF over the full visible spectrum, i.e. it can obtain the VSF at a specific wavelength with an optional wavelength-resolution. Measurements under controlled conditions for the assessment of the instrument agreed well with theoretically predicted scattering functions. Measurements with cultured phytoplankton of different species revealed a significant variety of the VSF together with spectral variation. The observed results will stimulate and improve radiative transfer and/or two-flow models of light in the ocean, which is an important role for ocean color remote sensing algorithm development, particularly for coastal regions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Preisendorfer, “Application of radiative transfer theory to light measurement in the sea,” Union Geod. Geophys. Inst. Monogr.10, 11–30 (1961).
  2. E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt.26(11), 2095–2101 (1987).
    [CrossRef] [PubMed]
  3. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991).
    [CrossRef]
  4. R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
    [CrossRef]
  5. J. E. Tyler and W. H. Richardson, “Nephelometer for the measurement of volume scattering in situ,” J. Opt. Soc. Am.48(5), 354–357 (1958).
    [CrossRef]
  6. N. G. Jerlov, “Distribution of suspended material in the Adriatic sea,” Arch. Oceanogr. Limnol.11, 227–250 (1958).
  7. N. Højerslev, “Tydall and fluorescence measurements in Danish and Norwegian waters related to dynamical features,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 16 (1971).
  8. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 72–78, Scripps Institution of Oceanography, San Diego, Calif. (1972).
  9. E. Aas, “The calibration of a scatterance and fluorescence meter,” Rep. Dept. Geophys. Univ. Oslo. 40 (1979).
  10. R. Reuter, “Characterization of marine particles suspensions by light scattering (II). Experimental results,” Oceanol. Acta3, 325–332 (1980).
  11. J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instruments, characterization, field measurements and data analysis protocols,” In J. L Mueller, G. S. Fargion & C. R. McClain (Eds.), Ocean optics protocols for satellite ocean color sensor validation, revision 4, Vol. IV: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, NASA Tech. Memo. 2003–211621/Rev4-Vol.IV. Greenbelt: NASA Goddard Space Flight Center, 65–76 (2003).
  12. X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
    [CrossRef]
  13. M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003).
    [CrossRef]
  14. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
    [CrossRef]
  15. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt.36(24), 6123–6128 (1997).
    [CrossRef] [PubMed]
  16. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007).
    [CrossRef]
  17. G. Kullenberg, “Scattering of light by Sargasso sea water,” Deep-Sea Res.15, 423–432 (1968).
  18. H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
    [CrossRef]
  19. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998).
    [CrossRef] [PubMed]
  20. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.
  21. T. Oishi, “Light scattering and polarization by suspended particulate matter in sea water,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 49 (1987).
  22. A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the sea: NATO AGARD Lect. Ser.61, (1973).
  23. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  24. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997).
    [CrossRef] [PubMed]
  25. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E.S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.
  26. W. E. Vargas and G. A. Niklasson, “Generalized method for evaluating scattering parameters used in radiative transfer models,” J. Opt. Soc. Am. A14(9), 2243–2252 (1997).
    [CrossRef]
  27. K. Alexandra, B. Marcus, and D. Claus-Dieter, COASTAL PHYTOPLANKTON: Photo guide for northern European seas (Pfeil, München, 2010).
  28. Alfred Wegener Institute for Polar and Marine Research (AWI), Biodiversity data provider, http://planktonnet.awi.de
  29. D. T. Thomas, “Scattering by plasma and dielectric bodies,” Ph.D. Thesis, Ohio State Univ., (1962).
  30. E. Aas, “The refractive index of phytoplankton,” Rep. Dept. Geophys. Univ. Oslo 46, (1981).
  31. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996).
    [CrossRef]
  32. H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).
  33. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light scattering by nonspherical particles: theory, measurements, and applications (Academic press, San Diego, 2000).
  34. R. J. Gibbs, “Light scattering from particles of different shapes,” J. Geophys. Res.83(C1), 501–502 (1978).
    [CrossRef]
  35. A. J. A. Smith, “The scattering of light by non-spherical particles,” Rep. Dept. Geophys. Univ. Oxford, (2008).
  36. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
    [CrossRef]
  37. W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express20(10), 11189–11206 (2012).
    [CrossRef] [PubMed]

2012 (1)

2007 (2)

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007).
[CrossRef]

2005 (1)

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

2004 (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

2003 (1)

M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003).
[CrossRef]

2002 (1)

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

1998 (2)

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998).
[CrossRef] [PubMed]

1997 (3)

1996 (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996).
[CrossRef]

1994 (1)

R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

1991 (1)

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991).
[CrossRef]

1987 (1)

1980 (1)

R. Reuter, “Characterization of marine particles suspensions by light scattering (II). Experimental results,” Oceanol. Acta3, 325–332 (1980).

1978 (1)

R. J. Gibbs, “Light scattering from particles of different shapes,” J. Geophys. Res.83(C1), 501–502 (1978).
[CrossRef]

1968 (1)

G. Kullenberg, “Scattering of light by Sargasso sea water,” Deep-Sea Res.15, 423–432 (1968).

1961 (1)

R. W. Preisendorfer, “Application of radiative transfer theory to light measurement in the sea,” Union Geod. Geophys. Inst. Monogr.10, 11–30 (1961).

1958 (2)

J. E. Tyler and W. H. Richardson, “Nephelometer for the measurement of volume scattering in situ,” J. Opt. Soc. Am.48(5), 354–357 (1958).
[CrossRef]

N. G. Jerlov, “Distribution of suspended material in the Adriatic sea,” Arch. Oceanogr. Limnol.11, 227–250 (1958).

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996).
[CrossRef]

E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt.26(11), 2095–2101 (1987).
[CrossRef] [PubMed]

Aursland, K.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Berseneva, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

Boss, E.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

Cao, W.

Chami, M.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Charlton, F.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Churilova, T. Y.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Dekker, A. G.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Doerffer, R.

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007).
[CrossRef]

R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

Erga, S. R.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Fischer, J.

R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

Fry, E. S.

Gibbs, R. J.

R. J. Gibbs, “Light scattering from particles of different shapes,” J. Geophys. Res.83(C1), 501–502 (1978).
[CrossRef]

Haan, J. F.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Hoogenboom, H. J.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Hovenier, J. W.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Hu, S.

Jerlov, N. G.

N. G. Jerlov, “Distribution of suspended material in the Adriatic sea,” Arch. Oceanogr. Limnol.11, 227–250 (1958).

Johnson, B.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998).
[CrossRef] [PubMed]

Khomenko, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Kirk, J. T. O.

Korotaev, G.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

Korotaev, G. K.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Kullenberg, G.

G. Kullenberg, “Scattering of light by Sargasso sea water,” Deep-Sea Res.15, 423–432 (1968).

Lee, M.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

Lee, M. E.

M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003).
[CrossRef]

Lee, M. E.-G.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Lewis, M.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998).
[CrossRef] [PubMed]

Lewis, M. R.

M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003).
[CrossRef]

Lotsberg, J. K.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Marken, E.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Martynov, O. V.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Morel, A.

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991).
[CrossRef]

Niklasson, G. A.

Olseng, C.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Pope, R. M.

Preisendorfer, R. W.

R. W. Preisendorfer, “Application of radiative transfer theory to light measurement in the sea,” Union Geod. Geophys. Inst. Monogr.10, 11–30 (1961).

Reuter, R.

R. Reuter, “Characterization of marine particles suspensions by light scattering (II). Experimental results,” Oceanol. Acta3, 325–332 (1980).

Richardson, W. H.

Röttgers, R.

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007).
[CrossRef]

Schreurs, R.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Shybanov, E. B.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

Stamnes, J. J.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

Stramski, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

Sun, Z.

Tyler, J. E.

Vargas, W. E.

Vassen, W.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Volten, H.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

Wang, G.

Wouts, R.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

Xu, Z.

Zhang, X.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998).
[CrossRef] [PubMed]

Zhao, J.

Zhou, W.

Appl. Opt. (4)

Arch. Oceanogr. Limnol. (1)

N. G. Jerlov, “Distribution of suspended material in the Adriatic sea,” Arch. Oceanogr. Limnol.11, 227–250 (1958).

Deep-Sea Res. (1)

G. Kullenberg, “Scattering of light by Sargasso sea water,” Deep-Sea Res.15, 423–432 (1968).

J. Atmos. Ocean. Technol. (1)

M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003).
[CrossRef]

J. Geophys. Res. (3)

R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.

R. J. Gibbs, “Light scattering from particles of different shapes,” J. Geophys. Res.83(C1), 501–502 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Plankton Res. (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996).
[CrossRef]

Limnol. Oceanogr. (3)

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998).
[CrossRef]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007).
[CrossRef]

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002).
[CrossRef]

Limnol. Oceanogr. Methods (1)

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007).
[CrossRef]

Oceanol. Acta (1)

R. Reuter, “Characterization of marine particles suspensions by light scattering (II). Experimental results,” Oceanol. Acta3, 325–332 (1980).

Opt. Express (1)

Prog. Oceanogr. (2)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004).
[CrossRef]

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991).
[CrossRef]

Union Geod. Geophys. Inst. Monogr. (1)

R. W. Preisendorfer, “Application of radiative transfer theory to light measurement in the sea,” Union Geod. Geophys. Inst. Monogr.10, 11–30 (1961).

Other (15)

J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instruments, characterization, field measurements and data analysis protocols,” In J. L Mueller, G. S. Fargion & C. R. McClain (Eds.), Ocean optics protocols for satellite ocean color sensor validation, revision 4, Vol. IV: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, NASA Tech. Memo. 2003–211621/Rev4-Vol.IV. Greenbelt: NASA Goddard Space Flight Center, 65–76 (2003).

N. Højerslev, “Tydall and fluorescence measurements in Danish and Norwegian waters related to dynamical features,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 16 (1971).

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 72–78, Scripps Institution of Oceanography, San Diego, Calif. (1972).

E. Aas, “The calibration of a scatterance and fluorescence meter,” Rep. Dept. Geophys. Univ. Oslo. 40 (1979).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E.S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.

T. Oishi, “Light scattering and polarization by suspended particulate matter in sea water,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 49 (1987).

A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the sea: NATO AGARD Lect. Ser.61, (1973).

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light scattering by nonspherical particles: theory, measurements, and applications (Academic press, San Diego, 2000).

A. J. A. Smith, “The scattering of light by non-spherical particles,” Rep. Dept. Geophys. Univ. Oxford, (2008).

K. Alexandra, B. Marcus, and D. Claus-Dieter, COASTAL PHYTOPLANKTON: Photo guide for northern European seas (Pfeil, München, 2010).

Alfred Wegener Institute for Polar and Marine Research (AWI), Biodiversity data provider, http://planktonnet.awi.de

D. T. Thomas, “Scattering by plasma and dielectric bodies,” Ph.D. Thesis, Ohio State Univ., (1962).

E. Aas, “The refractive index of phytoplankton,” Rep. Dept. Geophys. Univ. Oslo 46, (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic representation of the measurement principle for VSF measurements by image detection based on the reflection system (left), as well as that of the data-flow for the retrieval of VSF from “output scattering band image” provided from the high sensitive CCD camera (right). Note that 1) the light source, the monochromator and the collimator were omitted from Fig. for convenience, and 2) the forward scattering (0°-25°) in the example photo-picture (left side of the photograph) is attenuated by the ND (Neutral Density) filter, that makes an mathematical adjustment necessary to retrieve the entire VSF.

Fig. 2
Fig. 2

A schematic diagram of the different pathways of the primary beam fractions, and of the construction of the sample container and the light trap designed to solve the problem of re-irradiation of the scattering volume with reflections of the primary beam. The percentage values in the parenthesis mean the radiant energy relative to the incoming primary beam.

Fig. 3
Fig. 3

Comparison of spectral scattering at 90° in absolute unit between theoretical value (solid line) of optically pure water by Morel (1974) and direct measurements (symbols) of purified water. It should be noted that measurements at 400 nm and 700 nm were omitted due to the poor signal-to-noise ratio.

Fig. 4
Fig. 4

Normalized VSF of direct measurement (dashed line) at 550 nm for Latex particle with mean diameter of 10.9 μm. For comparison theoretically calculated functions (solid line) are shown. Note that 1E-1 is 10−1 on ordinate.

Fig. 5
Fig. 5

Comparison with the VSF shape in different concentrations. (Sample: Nannochloropsis sp. at 560 nm). The VSF with the maximum cp in this study is indicated as dashed line.

Fig. 6
Fig. 6

Spectral variation and mean of VSFs for different algal species, (a) to (e) with one standard deviation (dot), (f) comparison among mean VSFs for all cultures. Mean VSF and one standard deviation were determined through all wavelengths: width between the solid lines is associated with the degree of spectral dependency. Note that 1E-1 is 10−1 on ordinate.

Fig. 7
Fig. 7

Wavelength dependence of scattering coefficient at selected angles for (a) P. minimum and (b) Synechococcus sp. The numbers superimposed on graphs represent the scattering angle.

Tables (1)

Tables Icon

Table 1 Mean size and shape for five species of cultured phytoplankton

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β( θ )= dI( θ ) EdV ,
β( θ )= 1 dzdΩ dF( θ ) F( θ=0 ) ,
β( θ )= 1 dzdΩ L( θ ) e c( l 1 + l 2 ) L ( θ=0 ) e c( l 1 + l 2 ) ,
β w ( 90 )= β m ( 90 ) S w ( 90 ) S m ( 90 ) ,
| Δ β w ( 90 ) β w ( 90 ) || Δ β m ( 90 ) β m ( 90 ) |+| Δ S w ( 90 ) A w ( 90 ) |+| Δ S m ( 90 ) A m ( 90 ) |,

Metrics