Abstract

We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm2 and stable quality factors of ~2500.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
    [CrossRef] [PubMed]
  2. P. Guyot-Sionnest, “Electrical transport in colloidal quantum dot films,” J. Phys. Chem. Lett.3(9), 1169–1175 (2012).
    [CrossRef]
  3. A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
    [CrossRef]
  4. K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
    [CrossRef]
  5. A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
    [CrossRef]
  6. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
    [CrossRef] [PubMed]
  7. K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
    [CrossRef]
  8. Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
    [CrossRef]
  9. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
    [CrossRef] [PubMed]
  10. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
    [CrossRef]
  11. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
    [CrossRef] [PubMed]
  12. D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
    [CrossRef]
  13. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
    [CrossRef]
  14. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
    [CrossRef]
  15. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
    [CrossRef]
  16. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
    [CrossRef]
  17. C. S. Huang and W. C. Wang, “Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding,” Appl. Opt.47(25), 4540–4547 (2008).
    [CrossRef] [PubMed]
  18. I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26(6), 1243–1247 (2009).
    [CrossRef]
  19. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express15(3), 1267–1276 (2007).
    [CrossRef] [PubMed]
  20. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  21. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, and L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express17(23), 20762–20770 (2009).
    [CrossRef] [PubMed]
  22. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  24. L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
    [CrossRef]
  25. R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
    [CrossRef]
  26. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
    [CrossRef] [PubMed]
  27. V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
    [CrossRef]

2012

P. Guyot-Sionnest, “Electrical transport in colloidal quantum dot films,” J. Phys. Chem. Lett.3(9), 1169–1175 (2012).
[CrossRef]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

2011

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

2010

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

2009

2008

C. S. Huang and W. C. Wang, “Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding,” Appl. Opt.47(25), 4540–4547 (2008).
[CrossRef] [PubMed]

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

2007

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

2005

2004

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

2003

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

2002

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

2001

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
[CrossRef]

2000

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

1999

L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Abstreiter, G.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Aers, G.

Aharoni, A.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Andreani, L. C.

L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
[CrossRef]

Auxier, J.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Bakueva, L.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Banin, U.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Barclay, P.

Bawendi, M. G.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Bhattacharya, P.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

Borrelli, N. F.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Borri, P.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

Borselli, M.

Bose, R.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Chang, T.-W. F.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Chatterjee, R.

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

Chen, G.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Dalacu, D.

Daldosso, N.

De Geyter, B.

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Dorfner, D. F.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

Egelhaaf, H. J.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Eggleton, B. J.

Fedeli, J. M.

Felder, F.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Fill, M.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Finley, J. J.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Frédérick, S.

Fuchs, D.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Gao, J.

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

Gérard, J. M.

L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
[CrossRef]

Gomulya, W.

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Grillet, C.

Guider, R.

Guyot-Sionnest, P.

P. Guyot-Sionnest, “Electrical transport in colloidal quantum dot films,” J. Phys. Chem. Lett.3(9), 1169–1175 (2012).
[CrossRef]

Heiss, W.

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Hens, Z.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26(6), 1243–1247 (2009).
[CrossRef]

Hesser, G.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Hines, M. A.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Hingerl, K.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Ho?mann, A.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Huang, C. S.

Hürlimann, T.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

Isaji, Y.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Ishida, A.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Jarzab, D.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

Johnson, T. J.

Jordana, E.

Kan, S.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Kazes, M.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Khiar, A.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Kim, K.

R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
[CrossRef]

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Koch, T. L.

R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
[CrossRef]

Kockaert, P.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

Kodama, K.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Kovalenko, M.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Kovalenko, M. V.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Langbein, W.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

Lapointe, J.

Lee, J. S.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Loi, M. A.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Masia, F.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Medvedev, V.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

Monat, C.

Moreels, I.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26(6), 1243–1247 (2009).
[CrossRef]

Moss, D. J.

Musikhin, S.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Olsson, Y.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Omari, A.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

Pafchek, R. M.

R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
[CrossRef]

Painter, O.

Panzarini, G.

L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
[CrossRef]

Pavesi, L.

Peyghambarian, N.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Pitanti, A.

Poole, P. J.

Pötting, S.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Pun, E. Y. B.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Rahim, M.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Rakher, M. T.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

Rapaport, R.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Rinnerbauer, V.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Sakata, H.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Sargent, E. H.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Scha?er, F.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Schaller, R. D.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

Scholes, G. D.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Schülzgen, A.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Shevchenko, E. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Smith, C. L.

Srinivasan, K.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

Steckel, J. S.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Sugiyama, Y.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Sundar, V. C.

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

Szendrei, K.

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

Takano, Y.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Talapin, D. V.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Tummidi, R. S.

R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
[CrossRef]

Tzolov, M.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

Van Thourhout, D.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26(6), 1243–1247 (2009).
[CrossRef]

Wang, W. C.

Warming, T.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Weeber, J. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Werner, S.

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Williams, R. L.

Wong, C. W.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

Wong, W. H.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
[CrossRef]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

Wundke, K.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Xu, J.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

Yang, X.

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

Yarema, M.

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

Zhou, J.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
[CrossRef]

Zhu, T.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

Zogg, H.

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011).
[CrossRef]

K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010).
[CrossRef]

Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004).
[CrossRef]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003).
[CrossRef]

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007).
[CrossRef]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007).
[CrossRef]

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001).
[CrossRef]

Chem. Rev.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. Lett.

P. Guyot-Sionnest, “Electrical transport in colloidal quantum dot films,” J. Phys. Chem. Lett.3(9), 1169–1175 (2012).
[CrossRef]

Nano Lett.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Nature

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B

L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999).
[CrossRef]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012).
[CrossRef]

V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008).
[CrossRef]

Science

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002).
[CrossRef] [PubMed]

Other

R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized room temperature PL spectra of pure NCs drop cast onto a Silicon substrate (dotted line). The solid lines correspond to the spectra of the polymer-NC blend after drop casting (black) and 7 (red, circles) and 63 (blue, squares) days after drop casting (a). Average PL intensity of the resonance peaks for the same device under similar excitation in function of the days after drop casting a polymer-NC blend with a concentration of 4vol% (b). Sketch of the investigated RR coupled to the silicon WVG (c).

Fig. 2
Fig. 2

Room temperature PL spectrum of Novolak containing 4vol% of PbS drop cast onto the RR collected at one output facet of the WVG. Intensities of the RR resonance PL and the bus WVG PL are indicated as Ires and Iwvg (a). Comparison between the transmission measurements and the PL emission measurements (b). 3D Beam Propagation Method (BPM) simulation of the silicon WVG mode (TM polarization, λfreespace = 1.45µm) indicating the spatial overlap with the active material on top of the WVG (indicated by the dotted area) (c).

Fig. 3
Fig. 3

Average Intensity ratio R as a function of the NC concentration, defined as the ratio between the PL of the 5 most intense resonating modes and their respective PL background of the bus WVG (a). Measured enhancement factors, defined as R/η (full line, squares), and theoretically estimated enhancement Fres/Fwvg (dashed red line, open squares) as a function of the NC concentration (b). Intrinsic, Coupling and Total Q factors (Qi, Qc and Qt respectively) calculated from the measured transmission spectra and Q factors calculated from the obtained PL spectra (PL Q) (c).

Fig. 4
Fig. 4

Excitation power dependent PL intensities detected at the end facet of the bus WVG of Novolak containing 4vol% of PbS drop cast onto the RR for low (a) and high (b) excitation intensities. Room temperature PL spectrum at a pump intensity of 1.64kW/cm2 (c).

Metrics