Abstract

A novel method for increasing diffraction efficiency of transmission gratings is proposed. In this method, dielectric multilayers are inserted between a grating region and a substrate. These multilayers work as an anti-reflection coating for the transmission grating. It is presented that a grating with 1740 grooves/mm has the diffraction efficiency over 99% using this anti-reflection coating.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett.20,940–942 (1995).
    [CrossRef] [PubMed]
  2. J. R. Marciante and D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,” Opt. Lett.29,542–544 (2004).
    [CrossRef] [PubMed]
  3. H. Rathgen and H. L. Offerhaus, “Large bandwidth, highly efficient optical gratings through high index materials,” Opt. Express17,4268–4283 (2009).
    [CrossRef] [PubMed]
  4. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett.22,142–144 (1997).
    [CrossRef] [PubMed]
  5. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt.42,6934–6938 (2003).
    [CrossRef] [PubMed]
  6. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100 % diffraction efficiency,” Opt. Express16,5577–5584 (2008).
    [CrossRef] [PubMed]
  7. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express13,10448–10456 (2005).
    [CrossRef] [PubMed]
  8. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
    [CrossRef]
  9. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37,309–330 (2005).
    [CrossRef]
  10. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A10,2581–2591 (1993).
    [CrossRef]
  11. H. Wei and L. Li, “All-dielectric reflection gratings: A study of the physical mechanism for achieving high efficiency,” Appl. Opt.42,6255–6260 (2003).
    [CrossRef] [PubMed]
  12. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
    [CrossRef]

2009 (1)

2008 (1)

2006 (1)

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (2)

1997 (1)

1995 (1)

1993 (1)

1981 (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Clausnitzer, T.

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Decker, D.

Deng, Z.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Fan, Z.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Fuchs, H.-J.

Jupé, M.

Kämpfe, T.

Kley, E.-B.

Kong, W.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Li, L.

Limpert, J.

Liu, S.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Marciante, J. R.

McPhedran, R. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Nguyen, H. T.

Offerhaus, H. L.

Parriaux, O.

Perry, M. D.

Peschel, U.

Raguin, D. H.

Rathgen, H.

Ristau, D.

Shannon, C.

Shao, J.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Shen, J.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Shen, Z.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Shore, B. W.

Shults, E.

Tishchenko, A. V.

Tünnermann, A.

Wei, H.

Zellmer, H.

Zhao, Y.

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Zöllner, K.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Acta. (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta.28,413–428 (1981).
[CrossRef]

Opt. Commun. (1)

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun.267,50–57 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37,309–330 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dielectric gratings with rectangular grooves. A standard transmission grating (a), and a grating with dielectric multilayers between the grating region and the substrate (b).

Fig. 2
Fig. 2

Contour plot of diffraction efficiency for a standard fused silica transmission grating. The two parameters, f and h, are the filling factor and the depth of grooves.

Fig. 3
Fig. 3

Design of a dielectric transmission grating with the AR coating, which consists of three layers.

Fig. 4
Fig. 4

Contour plot of diffraction efficiency using the AR coating with three layers.

Fig. 5
Fig. 5

Contour profile of the square of relative field amplitude in the grating. The materials of layers are shown in the right hand side of the contour and the upper layer is the substrate.

Fig. 6
Fig. 6

Plots of the diffraction efficiency as a function of the incident angle. A standard transmission grating (a), and a grating with the AR coating (b). The circles and triangles represent the values of transmission waves and reflection waves, respectively.

Metrics