Abstract

We present the first experimental observation of exact backscattering of light by an ensemble of particles in ambient air. Our experimental set-up operates in the far-field single scattering approximation, covers the exact backscattering direction with accuracy (θ = π ± ε with ε = 3.5 × 10−3 rad) and efficiently collects the particles backscattering radiation, while minimizing any stray light. Moreover, by using scattering matrix formalism, the observation of the particles UV-backscattering signal allowed to measure the particles depolarization of water droplets and salt particles in air, for the first time, in the exact backscattering direction. We believe this result may be useful for comparison with the existing numerical models and for remote sensing field applications in radiative transfer and climatology.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, J. Laï, and Z. Li, “Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition,” Opt. Express20(18), 20771–20782 (2012).
    [CrossRef] [PubMed]
  2. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
    [CrossRef]
  3. D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992).
    [CrossRef]
  4. D. N. Whiteman, D. Venable, and E. Landulfo, “Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”,” Appl. Opt.50(15), 2170–2176, author reply 2177–2178 (2011).
    [CrossRef] [PubMed]
  5. I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
    [CrossRef]
  6. G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).
  7. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
    [CrossRef]
  8. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, NASA 2002)
  9. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spec. Rad. Transf.110(14-16), 1261–1279 (2009).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation interference and diffraction of light (Pergamon Press, 1982)
  11. G. Mie, “BeiträgezurOptiktrüberMedien, speziellkolloidalerMetallösungen,” Annalen der Physik330(3), 377–445 (1908).
    [CrossRef]
  12. R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000).
    [CrossRef] [PubMed]
  13. I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001).
    [CrossRef]
  14. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A1(8), 831–835 (1984).
    [CrossRef]
  15. O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011).
    [CrossRef]
  16. T. Sakaï, T. Nagai, Y. Zaizen, and Y. Mano, “Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber,” Appl. Opt.49(23), 4441–4449 (2010).
    [CrossRef] [PubMed]
  17. L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
    [CrossRef]
  18. M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
    [CrossRef]
  19. IPCC report, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 5 the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, 996 pp., (2007).
  20. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1982).
  21. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995).
    [CrossRef] [PubMed]
  22. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small volume element,” J. Opt. Soc. Am. A21(1), 71–87 (2004).
    [CrossRef] [PubMed]
  23. G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
    [CrossRef]
  24. M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: A tutorial review,” J. Quant. Spec. Rad. Transf.110(11), 808–832 (2009).
    [CrossRef]
  25. J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
    [CrossRef]
  26. D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995).
    [CrossRef]
  27. A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013).
    [CrossRef]
  28. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express20(28), 29553–29567 (2012).
    [CrossRef] [PubMed]
  29. J. Poirson, T. Lanternier, J. C. Cotteverte, A. L. Floch, and F. Bretenaker, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt.34(30), 6806–6818 (1995).
    [CrossRef] [PubMed]
  30. R. J. Perkins, LMFA, Ecole Centrale Lyon, France, personal communication (2012).
  31. B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
    [CrossRef]
  32. M. I. Mishchenko, L. Liu, and G. Videen, “Conditions of applicability of the single-scattering approximation,” Opt. Express15(12), 7522–7527 (2007).
    [CrossRef] [PubMed]
  33. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
    [CrossRef]
  34. W. A. Shurcliff, Polarized light (Harvard University Press, 1962)
  35. X. Zhu, “Explicit Jones transformation matrix for a tilted birefringent plate with its optic axis parallel to the plate surface,” Appl. Opt.33(16), 3502–3506 (1994).
    [CrossRef] [PubMed]
  36. K. Sassen, “Polarization in Lidar,” in Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).

2013

A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013).
[CrossRef]

2012

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

X. Wang, J. Laï, and Z. Li, “Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition,” Opt. Express20(18), 20771–20782 (2012).
[CrossRef] [PubMed]

M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express20(28), 29553–29567 (2012).
[CrossRef] [PubMed]

2011

D. N. Whiteman, D. Venable, and E. Landulfo, “Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”,” Appl. Opt.50(15), 2170–2176, author reply 2177–2178 (2011).
[CrossRef] [PubMed]

O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011).
[CrossRef]

2010

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

T. Sakaï, T. Nagai, Y. Zaizen, and Y. Mano, “Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber,” Appl. Opt.49(23), 4441–4449 (2010).
[CrossRef] [PubMed]

2009

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spec. Rad. Transf.110(14-16), 1261–1279 (2009).
[CrossRef]

M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: A tutorial review,” J. Quant. Spec. Rad. Transf.110(11), 808–832 (2009).
[CrossRef]

2007

2004

2003

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

2001

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001).
[CrossRef]

2000

R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000).
[CrossRef] [PubMed]

1999

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

1997

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

1995

1994

1992

D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992).
[CrossRef]

1984

1908

G. Mie, “BeiträgezurOptiktrüberMedien, speziellkolloidalerMetallösungen,” Annalen der Physik330(3), 377–445 (1908).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

Bretenaker, F.

Brooks, S. D.

A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013).
[CrossRef]

Büttner, S.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Cariou, J. P.

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

Cotteverte, J. C.

David, G.

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

Di Girolamo, P.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Dubovik, O.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Floch, A. L.

Ghosh, N.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

Glen, A.

A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013).
[CrossRef]

Hayman, M.

Hovenier, J. W.

O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small volume element,” J. Opt. Soc. Am. A21(1), 71–87 (2004).
[CrossRef] [PubMed]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995).
[CrossRef] [PubMed]

Ishimaru, A.

Kamataki, H.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

Kaneyasu, N.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

Kolgotin, A.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Kuga, Y.

Lagendijk, A.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995).
[CrossRef]

Laï, J.

Landulfo, E.

Lanternier, T.

Lapyonok, T.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Li, Z.

Liu, L.

M. I. Mishchenko, L. Liu, and G. Videen, “Conditions of applicability of the single-scattering approximation,” Opt. Express15(12), 7522–7527 (2007).
[CrossRef] [PubMed]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

Mackowski, D. W.

Mano, Y.

Mie, G.

G. Mie, “BeiträgezurOptiktrüberMedien, speziellkolloidalerMetallösungen,” Annalen der Physik330(3), 377–445 (1908).
[CrossRef]

Miffre, A.

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

Mishchenko, M.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: A tutorial review,” J. Quant. Spec. Rad. Transf.110(11), 808–832 (2009).
[CrossRef]

M. I. Mishchenko, L. Liu, and G. Videen, “Conditions of applicability of the single-scattering approximation,” Opt. Express15(12), 7522–7527 (2007).
[CrossRef] [PubMed]

M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small volume element,” J. Opt. Soc. Am. A21(1), 71–87 (2004).
[CrossRef] [PubMed]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995).
[CrossRef] [PubMed]

Miura, K.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

Möhler, O.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Morley, B.

Muñoz, O.

O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011).
[CrossRef]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

Murayama, T.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

Nagai, T.

Nousiainen, T.

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spec. Rad. Transf.110(14-16), 1261–1279 (2009).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

Okamoto, H.

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

Osborn, M. T.

D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992).
[CrossRef]

Poirson, J.

Rairoux, P.

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

Sakaï, T.

Schnaiter, M.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Skrotzki, J.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Spuler, S.

Studinski, R. C. N.

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001).
[CrossRef]

R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000).
[CrossRef] [PubMed]

Summa, D.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Tanré, D.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Thomas, B.

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

Van Albada, M. P.

D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995).
[CrossRef]

van der Zande, W. J.

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

VanAndel, J.

Venable, D.

Veselovskii, I.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Videen, G.

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001).
[CrossRef]

R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000).
[CrossRef] [PubMed]

Volten, H.

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

Vragel, M.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Wagner, R.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

Wang, X.

Waters, L. B. F. M.

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, D. Venable, and E. Landulfo, “Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”,” Appl. Opt.50(15), 2170–2176, author reply 2177–2178 (2011).
[CrossRef] [PubMed]

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995).
[CrossRef]

Winker, D. M.

D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992).
[CrossRef]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

Zaizen, Y.

Zhu, X.

Annalen der Physik

G. Mie, “BeiträgezurOptiktrüberMedien, speziellkolloidalerMetallösungen,” Annalen der Physik330(3), 377–445 (1908).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012).
[CrossRef]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012).
[CrossRef]

Atmos. Chem. Phys.

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012).
[CrossRef]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).

A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013).
[CrossRef]

Geophys. Res. Lett.

D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992).
[CrossRef]

J. Appl. Phys.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

J. Biomed. Opt.

R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000).
[CrossRef] [PubMed]

J. Geophys. Res.

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010).
[CrossRef]

T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spec. Rad. Transf.

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spec. Rad. Transf.110(14-16), 1261–1279 (2009).
[CrossRef]

O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011).
[CrossRef]

L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003).
[CrossRef]

M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: A tutorial review,” J. Quant. Spec. Rad. Transf.110(11), 808–832 (2009).
[CrossRef]

J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003).
[CrossRef]

Nature

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997).
[CrossRef]

Opt. Commun.

I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995).
[CrossRef]

Other

IPCC report, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 5 the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, 996 pp., (2007).

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1982).

M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation interference and diffraction of light (Pergamon Press, 1982)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, NASA 2002)

R. J. Perkins, LMFA, Ecole Centrale Lyon, France, personal communication (2012).

W. A. Shurcliff, Polarized light (Harvard University Press, 1962)

K. Sassen, “Polarization in Lidar,” in Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of an exact backscattering measurement for an ensemble of nanoparticles in ambient air: the particles backscattering radiation is discriminated from the background stray light by measuring the time interval Δt = 2D/c taken by a laser pulse to reach the detector, after retro-reflection on a polarizing beamsplitter cube (PBC). The polarization (p, s) of the laser pulses are given, the experiment is performed in the laboratory ambient air and a quarter-wave plate (QWP) is used to modulate the incident laser linear polarization.

Fig. 2
Fig. 2

Experimental set-up for measuring the exact backscattering of light pulses by an ensemble of particles in ambient air. The nanosecond time-resolved particles backscattering radiation is collected and detected after retro-reflection on a PBC. The nanoparticles were generated by atomization from a liquid water solution, then dried. An air-cooled 355 nm beam-dump (EKSMA optics) was placed a large distance from the particles to block the laser propagation.

Fig. 3
Fig. 3

Observation of exact backscattering of light by an ensemble of particles in air. Case study of salt particles. (a) Backscattering signal S as a function of time, for two ψ-angles of the QWP, in the presence (full-lines) and in the absence (dashed-lines, S = S0) of the particles. For ψ = 80.5° (black curve), at times lower than 20 ns, the S and S0 black curves merge on a unique line. (b) Particles backscattering signal Sp as a function of time obtained by applying Eq. (1). The sign of the PMT raw data have been changed to obtain a positive voltage and the signals result from an average over 150 laser shots. The time dependence of the signal S has been recorded at each time to ensure that the PMT remained in its linear regime (output voltage below 50 mV).

Fig. 4
Fig. 4

Time integral over the pulse duration of the particles backscattering signal Sp averaged over 150 laser shots as a function of the angle ψ of the QWP used to modulate the incident laser linear polarization. Case study of water droplets particles. The error bar on the reading of the ψ -angle is equal to 0.5°. The plotted error bar on S is too low to be visible (it is equal to 1σ and calculated from the statistical error obtained by averaging the time integral of Sp(t) over 150 laser shots). The full-line black curve (dashed-line blue curve) corresponds to the adjustment of the data by using Eq. (4) (after particles number normalization). In both cases, no systematic bias is visible on the residue plot plotted in the lower panel.

Tables (2)

Tables Icon

Table 1 Existing light scattering experiments for particles in air, close to the exact backscattering direction. The scattering angle θ, the wavelength of the radiation λ and the field of view FOV are given, together with the corresponding sample and the continuous / pulsed character of the chosen laser source. Our work provides laboratory measurements in the exact backscattering direction, with a high signal-to-noise ratio.

Tables Icon

Table 2 Characteristics of our optical set-up for collecting the particles backscattering radiation. The matrix optics numerical program computes the distances D, DØ and D1 for the following set of input values: dc = d1 = d2 = 25.4 mm, Ø = 1 mm, using a 100 mm distance between (L1) and (L2).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S p =S S 0
S t p ( t i +Δt)= α D² × M p ×S t inc ( t i )
M p = M R × T air,-k × F p × T air,k × M E
S p (ψ)= α 2D² ×[ F 11,p + F 22,p +( F 11,p 3 F 22,p )×cos(4ψ) ]
M E =[ 1 0 0 0 0 cos 2 (2ψ) sin(4ψ)/2 sin(2ψ) 0 sin(4ψ)/2 sin 2 (2ψ) cos(2ψ) 0 sin(2ψ) cos(2ψ) 0 ][ T P T P 0 0 T P T P 0 0 0 0 2 T S 1/2 0 0 0 0 2 T S 1/2 ]
M R =[ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ][ R S R S 0 0 R S R S 0 0 0 0 2 R P 1/2 0 0 0 0 2 R P 1/2 ][ 1 0 0 0 0 cos 2 (2ψ) sin(4ψ)/2 sin(2ψ) 0 sin(4ψ)/2 sin 2 (2ψ) cos(2ψ) 0 sin(2ψ) cos(2ψ) 0 ]
F P =[ F 11,P 0 0 F 14,P 0 F 22,P 0 0 0 0 F 22,P 0 F 14,P 0 0 F 11,P 2 F 22,P ]
M P =[ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ][ R S R S 0 0 R S R S 0 0 0 0 2 R P 1/2 0 0 0 0 2 R P 1/2 ][ 1 0 0 0 0 cos 2 (2ψ) sin(4ψ)/2 sin(2ψ) 0 sin(4ψ)/2 sin 2 (2ψ) cos(2ψ) 0 sin(2ψ) cos(2ψ) 0 ][ F 11,P 0 0 F 14,P 0 F 22,P 0 0 0 0 F 22,P 0 F 14,P 0 0 F 11,P 2 F 22,P ][ 1 0 0 0 0 cos 2 (2ψ) sin(4ψ)/2 sin(2ψ) 0 sin(4ψ)/2 sin 2 (2ψ) cos(2ψ) 0 sin(2ψ) cos(2ψ) 0 ]
S p (ψ)= α 2D² ×[ F 11,p + F 22,p +( F 11,p 3 F 22,p )×cos(4ψ) ]

Metrics