Abstract

We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO2) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10−18 m2/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm−1 Raman line of anatase with a gain coefficient of 6.6 × 10−12 m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO2 make it a promising material for integrated photonics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett.25, 554–556 (2000).
    [CrossRef]
  3. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15, 12949–12958 (2007).
    [CrossRef] [PubMed]
  4. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007).
    [CrossRef]
  5. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
    [CrossRef]
  6. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  7. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  8. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004).
    [CrossRef] [PubMed]
  9. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3waveguides,” Opt. Express18, 16206–16216 (2010).
    [CrossRef] [PubMed]
  10. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express20, 23100–23107 (2012).
    [CrossRef] [PubMed]
  11. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
    [CrossRef]
  12. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol24, 4502–4513 (2006).
    [CrossRef]
  13. J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992).
    [PubMed]
  14. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt.40, 5742–5747 (2001).
    [CrossRef]
  15. H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003).
    [CrossRef]
  16. J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005).
    [CrossRef] [PubMed]
  17. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photon3, 696–705 (2009).
    [CrossRef]
  18. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1, 67–72 (1984).
    [CrossRef]
  19. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
    [CrossRef] [PubMed]
  20. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39, 1498–1503 (2003).
    [CrossRef]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
    [CrossRef]
  22. J. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009).
    [CrossRef]
  23. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE1852, 75–89 (1993).
    [CrossRef]
  24. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
    [CrossRef]
  25. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon5, 141–148 (2011).
  26. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
    [CrossRef]
  27. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express14, 9377–9384 (2006).
    [CrossRef] [PubMed]
  28. S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
    [CrossRef]
  29. J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
    [CrossRef]
  30. D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
    [CrossRef] [PubMed]
  31. C. C. Evans, J. D. B. Bradley, E. A. Mart-Panameo, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express20, 3118–3128 (2012).
    [CrossRef] [PubMed]
  32. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
    [CrossRef]
  33. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
    [CrossRef]
  34. S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987).
    [CrossRef]
  35. H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
    [CrossRef]
  36. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37, 546–550 (1998).
    [CrossRef]
  37. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2nanolayers for third-order pulse characterization,” Opt. Express19, 16985–16995 (2011).
    [CrossRef] [PubMed]
  38. E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
    [CrossRef] [PubMed]
  39. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
    [CrossRef]
  40. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express20, 23821–23831 (2012).
    [CrossRef] [PubMed]
  41. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2resonators for visible photonics,” Opt. Lett.37, 539–541 (2012).
    [CrossRef] [PubMed]
  42. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laserpulse spectral phase characterization and compensation,” Opt. Lett.29, 775–777 (2004).
    [CrossRef] [PubMed]
  43. G. P. Agrawal, “Quantum electronics–principles and applications,” in Nonlinear fiber optics,4th ed.(Elsevier/Academic Press, Amsterdam ; Boston, 2007).
  44. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
    [CrossRef]
  45. L. Yin, “Study of Nonlinear Optical Effects in Silicon Waveguides,” Ph.D. thesis (2009).
  46. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
    [CrossRef]
  47. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007).
    [CrossRef] [PubMed]
  48. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987–12994 (2008).
    [CrossRef] [PubMed]
  49. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12, 2880–2887 (2004).
    [CrossRef]
  50. H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
    [CrossRef]

2012

2011

2010

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3waveguides,” Opt. Express18, 16206–16216 (2010).
[CrossRef] [PubMed]

H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
[CrossRef]

2009

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photon3, 696–705 (2009).
[CrossRef]

J. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009).
[CrossRef]

2008

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
[CrossRef]

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987–12994 (2008).
[CrossRef] [PubMed]

2007

2006

2005

J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005).
[CrossRef] [PubMed]

2004

2003

H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003).
[CrossRef]

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39, 1498–1503 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
[CrossRef]

2001

2000

1998

1997

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

1995

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

1994

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
[CrossRef]

1993

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE1852, 75–89 (1993).
[CrossRef]

1992

J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992).
[PubMed]

1990

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
[CrossRef] [PubMed]

1989

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

1987

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987).
[CrossRef]

1984

1978

J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
[CrossRef]

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
[CrossRef]

Absil, P. P.

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
[CrossRef]

Agrawal, G. P.

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007).
[CrossRef] [PubMed]

G. P. Agrawal, “Quantum electronics–principles and applications,” in Nonlinear fiber optics,4th ed.(Elsevier/Academic Press, Amsterdam ; Boston, 2007).

Aitchison, J. S.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

Alic, N.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Azzini, S.

Bajoni, D.

Baker, N. J.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Berger, H.

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

Bock, M.

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Boyd, R. W.

Boyraz, O.

Bradley, J. D. B.

Bunzli, J.-C. G.

J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005).
[CrossRef] [PubMed]

Burgess, I. B.

Cab, C.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Camassel, J.

J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
[CrossRef]

Castillo-Matadamas, H. A.

H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
[CrossRef]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
[CrossRef]

Chen, A.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Chen, X.

Chergui, M.

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

Cho, P. S.

Choi, D. Y.

Choy, J. T.

Christodoulides, D. N.

Colman, P.

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

Combrie, S.

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

Coss, R. d.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Dadap, J. I.

Dantus, M.

Das, S. K.

De Angelis, C.

De Rossi, A.

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

Deotare, P. B.

Dinu, M.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39, 1498–1503 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
[CrossRef]

Dulkeith, E.

Eggleton, B. J.

El-Ganainy, R.

Elsaesser, T.

Espinosa-Pesqueira, M. E.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Evans, C. C.

Fainman, Y.

Finsterbusch, K.

Foster, M. A.

Friberg, S.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987).
[CrossRef]

Fu, L. B.

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
[CrossRef]

Gaeta, A. L.

Galli, M.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
[CrossRef]

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Grassani, D.

Green, W. M.

Griebner, U.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Grunwald, R.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photon3, 696–705 (2009).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
[CrossRef] [PubMed]

Hall, J. W.

J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992).
[PubMed]

Hashimoto, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
[CrossRef]

Heebner, J. E.

Helt, L. G.

Ho, P. T.

Hryniewicz, J. V.

Hsieh, I. W.

Husko, C.

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

Ikeda, K.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Iwanow, R.

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
[CrossRef]

Jalali, B.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004).
[CrossRef] [PubMed]

Joneckis, L. G.

Judge, A. C.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
[CrossRef]

Koyama, F.

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol24, 4502–4513 (2006).
[CrossRef]

Kuzucu, O.

Lamont, M. R. E.

Levy, J. S.

Li, Y.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Liang, W.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Lima-Garca, R. M.

H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
[CrossRef]

Lin, Q.

Lipson, M.

Liscidini, M.

Little, B. E.

Liu, X.

Locatelli, A.

Loncar, M.

Long, H.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Lozovoy, V. V.

Lu, P.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Luther-Davies, B.

Lvy, F.

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

Madden, S.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Marshall, G. D.

Mart-Panameo, E. A.

Mathieu, H.

J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Mazur, E.

Milam, D.

Modotto, D.

Moll, K. D.

Morandotti, R.

Moss, D. J.

Nguyen, H. C.

Obrig, H.

H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003).
[CrossRef]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
[CrossRef]

Okawachi, Y.

Osgood, J. R. M.

Oskam, G.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Panoiu, N. C.

Parsy, F.

Pascual, J.

J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
[CrossRef]

Pastirk, I.

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
[CrossRef]

Petrov, V.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Pfuch, A.

Phillips, K. C.

Piguet, C.

J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005).
[CrossRef] [PubMed]

Pollard, A.

J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992).
[PubMed]

Pollnau, M.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Portuondo-Campa, E.

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

Pozzi, F.

Quintero-Torres, R.

H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
[CrossRef]

Reshef, O.

Reyes-Coronado, D.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon5, 141–148 (2011).

Rivier, S.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Rodrguez-Gattorno, G.

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

Saha, K.

Sakka, S.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
[CrossRef]

Salem, R.

Saperstein, R. E.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Schmid, P. E.

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

Schwanke, C.

Seeber, W.

Seidel, D.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
[CrossRef] [PubMed]

Sipe, J. E.

Siviloglou, G. A.

Smith, P.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987).
[CrossRef]

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
[CrossRef]

Sorel, M.

Stanley, C. R.

Steel, M. J.

Stegeman, G. I.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express14, 9377–9384 (2006).
[CrossRef] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE1852, 75–89 (1993).
[CrossRef]

Steinmeyer, G.

Strain, M. J.

Suntsov, S.

Ta’eed, V. G.

Tang, H.

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

Tortschanoff, A.

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

Tran, Q. V.

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

Turner, A. C.

van Mourik, F.

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
[CrossRef] [PubMed]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

Villringer, A.

H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003).
[CrossRef]

Vlasov, Y. A.

Wen, Y. H.

Wherrett, B. S.

Wilson, R. A.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

Xiong, C.

Yang, G.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Yin, L.

L. Yin, “Study of Nonlinear Optical Effects in Silicon Waveguides,” Ph.D. thesis (2009).

Yoko, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008).
[CrossRef]

S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009).
[CrossRef]

B. Chem. Soc. Jpn

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994).
[CrossRef]

Chem. Soc. Rev.

J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005).
[CrossRef] [PubMed]

Clin. Chem.

J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992).
[PubMed]

IEEE J. Quantum Electron.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39, 1498–1503 (2003).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997).
[CrossRef]

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007).
[CrossRef]

J. Cerebr. Blood F. Met.

H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003).
[CrossRef]

J. Chem. Phys.

E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol24, 4502–4513 (2006).
[CrossRef]

J. Mod. Opt.

H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Raman Spectrosc.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978).
[CrossRef]

Nanotechnology

D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008).
[CrossRef] [PubMed]

Nat. Photon

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photon3, 696–705 (2009).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon5, 141–148 (2011).

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12, 2880–2887 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004).
[CrossRef] [PubMed]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express14, 9377–9384 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15, 12949–12958 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987–12994 (2008).
[CrossRef] [PubMed]

C. C. Evans, J. D. B. Bradley, E. A. Mart-Panameo, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express20, 3118–3128 (2012).
[CrossRef] [PubMed]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3waveguides,” Opt. Express18, 16206–16216 (2010).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2nanolayers for third-order pulse characterization,” Opt. Express19, 16985–16995 (2011).
[CrossRef] [PubMed]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express20, 23100–23107 (2012).
[CrossRef] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express20, 23821–23831 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989).
[CrossRef]

J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978).
[CrossRef]

Phys. Rev. Lett.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990).
[CrossRef] [PubMed]

Proc. SPIE

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE1852, 75–89 (1993).
[CrossRef]

Thin Solid Films

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009).
[CrossRef]

Other

G. P. Agrawal, “Quantum electronics–principles and applications,” in Nonlinear fiber optics,4th ed.(Elsevier/Academic Press, Amsterdam ; Boston, 2007).

L. Yin, “Study of Nonlinear Optical Effects in Silicon Waveguides,” Ph.D. thesis (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scanning electron micrograph of a 200-nm wide polycrystalline-anatase TiO2 waveguide, prior to top cladding (a). The waveguide is trapezoidal in shape and the TiO2 grains are columnar in appearance. We show simulated mode-profiles of the fundamental TM and TE-like modes around 1565 and 794 nm (b and c, respectively), showing strong confinement in our single-mode waveguides.

Fig. 2
Fig. 2

Measured (thick) and simulated (thin) spectral broadening for a 900-nm wide polycrystalline-anatase TiO2 waveguide at λ0 = 1565 nm at incident energies from 29 pJ to 443 pJ. As the energy is increased, oscillatory features appear in the central peak and a secondary peak around 1600 nm emerges for energies greater than 120 pJ.

Fig. 3
Fig. 3

Measured (thick) and simulated (thin) spectral broadening for a 200-nm wide poly-crystalline anatase TiO2 waveguide at incident energies from 1 pJ to 48 pJ. The data show a strong red-shifted asymmetry with increasing energy at λ0 = 794 nm.

Tables (2)

Tables Icon

Table 1 Laser parameters used for measurement.

Tables Icon

Table 2 Nonlinear optical parameters determined from fitting simulation to experimental data (Figs. 2 and 3). We estimate an uncertainty of ± 20% for 1565 nm. Parameters around 794 nm should be considered order of magnitude estimates. Parameters with asterisks were not fit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z + 1 2 α 1 A ( z , t ) + α 2 A 2 ( z , t ) A eff + α 3 ( A 2 ( z , t ) A eff ) 2 + i β 2 2 2 A ( z , t ) t 2 β 3 6 3 A ( z , t ) t 3 = i γ ( 1 + i ω 0 t ) ( A ( z , t ) R ( t ) | A ( z , t t ) | 2 d t ) ,
γ = 2 π λ n 2 ( x , y ) | F ( x , y ) | 4 d x d y ( | F ( x , y ) | 2 d x d y ) 2 .
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t / τ 2 ) sin ( t / τ 1 ) .

Metrics