Abstract

The broadband parametric fluorescence from a nonlinear crystal can be used as a compact primary source instead of a blackbody for absolute measurements of instrument spectral efficiency. We describe such a setup for measuring the instrument spectral response function in the wavelength range from 450 to 1000 nm. We perform angle–resolved imaging spectroscopy of conical parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser. The experimental angle–resolved spectra and the generation efficiency of parametric down–conversion agree with a plane-wave theoretical analysis.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. P. Fox, “Primary radiometric quantities and units,” Metrologia37, 507 (2000).
    [CrossRef]
  2. J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.
  3. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt.45, 8218–8237 (2006).
    [CrossRef] [PubMed]
  4. J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
    [CrossRef]
  5. R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
    [CrossRef]
  6. T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication250, 41 (2008).
  7. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt.26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  8. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
    [CrossRef]
  9. A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today52, 41 (1999).
    [CrossRef]
  10. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
    [CrossRef]
  11. J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
    [CrossRef]
  12. D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. A174, 1027–1041 (1968).
  13. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
    [CrossRef]
  14. T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev.166, 225–233 (1968).
    [CrossRef]
  15. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev.168, 1064–1068 (1968).
    [CrossRef]
  16. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B14, 1693–1706 (1976).
    [CrossRef]
  17. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
    [CrossRef]
  18. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
    [CrossRef]
  19. B. Y. Zeldovich and D. N. Klyshko, “Field statistics in parametric luminescence,” JETP Lett.9, 40 (1969).
  20. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett.25, 84–87 (1970).
    [CrossRef]
  21. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988).
    [CrossRef] [PubMed]
  22. Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
    [CrossRef] [PubMed]
  23. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  24. Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys.66, 1009 (2003).
    [CrossRef]
  25. S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
    [CrossRef] [PubMed]
  26. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  27. C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).
  28. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
    [CrossRef] [PubMed]
  29. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
    [CrossRef]
  30. K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
    [CrossRef]
  31. F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type-I LBO crystal,” Eur. Phys. J. D8, 117–124 (2000).
    [CrossRef]
  32. D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory,” Am. J. Phys.70, 903–910 (2002).
    [CrossRef]
  33. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
    [CrossRef] [PubMed]
  34. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
    [CrossRef]
  35. M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: Geometry and absolute brightness,” Phys. Rev. A79, 043835 (2009).
    [CrossRef]
  36. M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A54, 5349–5360 (1996).
    [CrossRef] [PubMed]
  37. M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
    [CrossRef]
  38. R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
    [CrossRef]

2011

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

2010

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

2009

M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: Geometry and absolute brightness,” Phys. Rev. A79, 043835 (2009).
[CrossRef]

2008

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
[CrossRef]

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication250, 41 (2008).

2006

2003

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys.66, 1009 (2003).
[CrossRef]

2002

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory,” Am. J. Phys.70, 903–910 (2002).
[CrossRef]

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
[CrossRef]

2000

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type-I LBO crystal,” Eur. Phys. J. D8, 117–124 (2000).
[CrossRef]

N. P. Fox, “Primary radiometric quantities and units,” Metrologia37, 507 (2000).
[CrossRef]

1999

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today52, 41 (1999).
[CrossRef]

1997

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

1996

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A54, 5349–5360 (1996).
[CrossRef] [PubMed]

1995

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

1994

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

1988

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988).
[CrossRef] [PubMed]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt.26, 4616–4619 (1987).
[CrossRef] [PubMed]

1985

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

1976

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B14, 1693–1706 (1976).
[CrossRef]

1970

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett.25, 84–87 (1970).
[CrossRef]

1969

B. Y. Zeldovich and D. N. Klyshko, “Field statistics in parametric luminescence,” JETP Lett.9, 40 (1969).

1968

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. A174, 1027–1041 (1968).

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev.166, 225–233 (1968).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev.168, 1064–1068 (1968).
[CrossRef]

1967

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
[CrossRef]

1963

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
[CrossRef]

1961

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
[CrossRef]

Alley, C. O.

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988).
[CrossRef] [PubMed]

Boeuf, N.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Branning, D.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Brown, S. W.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett.25, 84–87 (1970).
[CrossRef]

Byer, R. L.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B14, 1693–1706 (1976).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev.168, 1064–1068 (1968).
[CrossRef]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
[CrossRef]

Chakmakjian, S. H.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

Chaperot, I.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Chen, C.

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Cheung, E. C.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B14, 1693–1706 (1976).
[CrossRef]

Datla, R. U.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

Dauler, E.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Dehlinger, D.

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory,” Am. J. Phys.70, 903–910 (2002).
[CrossRef]

Devaux, F.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type-I LBO crystal,” Eur. Phys. J. D8, 117–124 (2000).
[CrossRef]

Efremov, M. A.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Eppeldauer, G. P.

Fedorov, M. V.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Feikes, J.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

Fox, N. P.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

N. P. Fox, “Primary radiometric quantities and units,” Metrologia37, 507 (2000).
[CrossRef]

Friberg, S.

S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
[CrossRef] [PubMed]

Giallorenzi, T. G.

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev.166, 225–233 (1968).
[CrossRef]

Gordon, J. P.

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
[CrossRef]

Guerin, S.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Harris, S. E.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev.168, 1064–1068 (1968).
[CrossRef]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
[CrossRef]

Hollandt, J.

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
[CrossRef] [PubMed]

Houston, J. M.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication250, 41 (2008).

Ikonen, E.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

Ito, R.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

Jaeger, G.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Jiang, A.

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Kiess, T. E.

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

Kitamoto, A.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

Klein, R.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Klein, R. S.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Kleinman, D. A.

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. A174, 1027–1041 (1968).

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

B. Y. Zeldovich and D. N. Klyshko, “Field statistics in parametric luminescence,” JETP Lett.9, 40 (1969).

Koch, K.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

Kondo, T.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

Kugel, G. E.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Kulik, S. P.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Kurtsiefer, C.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Lamas-Linares, A.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
[CrossRef]

Lantz, E.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type-I LBO crystal,” Eur. Phys. J. D8, 117–124 (2000).
[CrossRef]

Larason, T. C.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication250, 41 (2008).

Ling, A.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
[CrossRef]

Liu, J. M.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

Louisell, W. H.

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
[CrossRef]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
[CrossRef]

Lykke, K. R.

Maillard, A.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Migdall, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today52, 41 (1999).
[CrossRef]

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Migdall, A. L.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

Mitchell, M. W.

M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: Geometry and absolute brightness,” Phys. Rev. A79, 043835 (2009).
[CrossRef]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory,” Am. J. Phys.70, 903–910 (2002).
[CrossRef]

Moore, G. T.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

Moreva, E. V.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Muller, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Polgár, K.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Rarity, J. G.

Rastello, M. L.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

Ridley, K. D.

Rubin, M. H.

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A54, 5349–5360 (1996).
[CrossRef] [PubMed]

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

Seidel, J.

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Sergienko, A.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

Shih, Y.

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys.66, 1009 (2003).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988).
[CrossRef] [PubMed]

Shirane, M.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

Shoji, I.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
[CrossRef]

Sifi, A.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Straupe, S. S.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Tang, C. L.

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev.166, 225–233 (1968).
[CrossRef]

Tapster, P. R.

Thornagel, R.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

Ulm, G.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Volkov, P. A.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Walker, L. R.

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
[CrossRef]

Ware, M.

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett.25, 84–87 (1970).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Wu, B.

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Wüstefeld, G.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
[CrossRef]

You, G.

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zeldovich, B. Y.

B. Y. Zeldovich and D. N. Klyshko, “Field statistics in parametric luminescence,” JETP Lett.9, 40 (1969).

Zwinkels, J. C.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

Am. J. Phys.

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory,” Am. J. Phys.70, 903–910 (2002).
[CrossRef]

Appl. Opt.

Eur. Phys. J. D

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type-I LBO crystal,” Eur. Phys. J. D8, 117–124 (2000).
[CrossRef]

IEEE J. Quantum Electron.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross section,” IEEE J. Quantum Electron.31, 769–781 (1995).
[CrossRef]

J. Electron. Spectrosc. Relat. Phenom.

R. Klein, R. Thornagel, G. Ulm, J. Feikes, and G. Wüstefeld, “Status of the metrology light source,” J. Electron. Spectrosc. Relat. Phenom.184, 331–334 (2011).
[CrossRef]

J. Opt. Soc. Am. B: Opt. Phys.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B: Opt. Phys.14, 2268–2294 (1997).
[CrossRef]

JETP Lett.

B. Y. Zeldovich and D. N. Klyshko, “Field statistics in parametric luminescence,” JETP Lett.9, 40 (1969).

Metrologia

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32, 479 (1995).
[CrossRef]

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia47, R15 (2010).
[CrossRef]

N. P. Fox, “Primary radiometric quantities and units,” Metrologia37, 507 (2000).
[CrossRef]

NIST Special Publication

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication250, 41 (2008).

Opt. Eng.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng.39, 1016–1024 (2000).
[CrossRef]

Opt. Mater.

R. S. Klein, G. E. Kugel, A. Maillard, A. Sifi, and K. Polgár, “Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation,” Opt. Mater.22, 163–169 (2003).
[CrossRef]

Opt. Quantum Electron.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34, 797–833 (2002).
[CrossRef]

Phys. Rev.

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev.166, 225–233 (1968).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev.168, 1064–1068 (1968).
[CrossRef]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.” Phys. Rev.124, 1646–1654 (1961).
[CrossRef]

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II.” Phys. Rev.129, 481–485 (1963).
[CrossRef]

Phys. Rev. A

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. A174, 1027–1041 (1968).

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A50, 23–28 (1994).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A77, 043834 (2008).
[CrossRef]

M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: Geometry and absolute brightness,” Phys. Rev. A79, 043835 (2009).
[CrossRef]

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A54, 5349–5360 (1996).
[CrossRef] [PubMed]

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions,” Phys. Rev. A77, 032336 (2008).
[CrossRef]

Phys. Rev. B

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B14, 1693–1706 (1976).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett.18, 732–734 (1967).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

S. Friberg, C. K. Hong, and L. Mandel, “Measurement of time delays in the parametric production of photon pairs,” Phys. Rev. Lett.54, 2011–2013 (1985).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett.25, 84–87 (1970).
[CrossRef]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Phys. Today

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today52, 41 (1999).
[CrossRef]

Rep. Prog. Phys.

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys.66, 1009 (2003).
[CrossRef]

Sci. Sin. Ser. B

C. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Other

J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall, and M. Ware, Primary sources for use in radiometry (Academic Press, 2005), vol. 41 of Experimental Methods in the Physical Sciences, pp. 213–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the crystal and laboratory frame coordinates for parametric down-conversion in a BBO crystal. The phase-matching angle θm is defined as the angle formed by the crystal optical axis (z′) and the pump wave vector (z). The angles θ′s and θs are, respectively, internal and external angles formed by the signal and pump wave vectors. Here the incident pump wave is horizontally polarized, leading to a vertically polarized down-converted signal and idler waves.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup. The transmitted and scattered pump photons are rejected by a miniature beam blocker, a thin-film notch filter, and long-pass filters. The angular and spectral distributions of conical parametric fluorescence are measured by an imaging spectrometer through a Fourier transform optical system. L1, L2 and L3 are convergent lenses with focal length f = 500, 100, and 100 mm, respectively; Obj is an objective (20× N.A.=0.26) with an effective focal length of 10 mm (Mitutoyo Plan Apo infinity-corrected long-working-distance objective); P1 and P2 are Glan–Taylor and Glan–Thompson polarizers; M1 and M2 are silver mirrors; HWP is a half-wave plate for λ = 405 nm; BB is a miniature pump beam blocker; NF is a notch filter (Semrock 405-nm StopLine single-notch filter); and LP represents longpass filters (a Semrock 409-nm blocking edge BrightLine long-pass filter and a Schott GG435 glass filter). When L2 is removed, a real-space fluorescence image is formed at the entrance of the spectrometer with an imaging magnification of 10×. Examples of real-space and angle-resolved fluorescence images are shown with actual dimensions.

Fig. 3
Fig. 3

Angular intensity distribution of parametric fluorescence at 810 nm. (a)–(d) Angle-resolved images of parametric fluorescence for λ = 810 ± 0.5 nm and θm as indicated. The external angle θs is formed by the pump and signal wave vectors in air [see also Fig. 1]. The color palette represents the intensity of the single radiation. Parametric fluorescence is spectrally filtered through a 1-nm bandpass filter with central wavelength λ = 800 nm. The phase-matching angle is adjusted by tilting the BBO crystal with respect to the pump wave vector. The collinear phase-matching angle is set to θm = 28.6° according to a theoretical calculation using indices of refraction given in [29]. (e)–(g) Experimental (blue dashed line) and theoretical (red solid line) cross-sections. The non-collinear phase-matching angle relative to the collinear one can be determined experimentally by measuring the tilting angle of the crystal surface with respect to the pump wave vector.

Fig. 4
Fig. 4

Angular spreads ΔθFWHMof parametric fluorescence at 810 nm. ΔθFWHM is plotted as a function of the inverse of the signal angle (1/θs). Experimental data are represented with error bars as solid circles. The red solid line is the theoretical curve according to Eq. 5, while the dashed line is the theoretical curve including a finite angular resolution of 2 mrad. Selected experimental angular intensity profiles for A (θs = 1.3° = 0.023 rad), B (2.8° = 0.049 rad), and C (3.7° = 0.065 rad) are shown in the inset.

Fig. 5
Fig. 5

Angle-resolved spectra of parametric fluorescence. (a)–(d) Experimental angle-resolved parametric fluorescence images (left panel) and spectra (right panel) for a phase-matching angle θm = 28.6°, 28.8°, 29.1°, and 29.4°, respectively. (e)–(h) Theoretical fluorescence flux calculated according to Eq. (6). The tuning curves for the perfect phase-matching condition are indicated by the white dashed lines on experimental imaging spectra. The color palette represents the calculated photon flux with Δλs = 1 nm and Δθs = 0.5 mrad on a logarithmic scale.

Fig. 6
Fig. 6

Parametric fluorescence flux at 810nm. Integrated degenerate parametric fluorescence flux at λs = 810 nm as a function of the incident pump flux for the collinear case and three phase-matching angles θm of the angle-resolved images shown in Fig. 3. Signal flux is linearly proportional to the pump flux over two order of magnitude, confirming that the dominant signal is spontaneous parametric fluorescence as described by Eq. (7). The slopes η = Ns/Np are 1.2 × 10−10 for θm = 28.6°, 2.6 × 10−10 for θm = 28.8°, and 2.8 × 10−10 for θm = 29.1° and 29.4°.

Fig. 7
Fig. 7

Instrument spectral response function. The normalized spectral density function S(λ) for θm = 29.1° and 29.4°. Ssim is determined from the integration over θs = −7.5° to 7.5° of the calculated angle-resolved spectra as shown in Fig. 5 [see also Eq. (6)]. The black and red curves are S exp * for θm = 29.4° and 29.1°, respectively. The value of Ssim is a constant with 1% standard deviation across wavelengths from 500 to 1000 nm, validating the calculated angular fluorescence spectra and Eq. (7). S exp * ( λ ) = N s * ( λ ) λ s 4 λ i 2, where N s * ( λ ) is the integration over θs ≈ −15° to 15° of the experimental imaging spectra N s * ( λ s , θ s ). S exp * ( λ ) represents a relative instrument spectral response function (ISRF) of the optical spectroscopy system, including optical filters and a Glan-Thompson polarizer along the path of the fluorescence, a liquid-nitrogen-cooled CCD (PI-Acton Spec-10:400BR), and a 300g/mm plane ruled reflectance grating with 1000-nm blaze wavelength (PI-Acton 750-1-030-1). The polarization of the fluorescence is vertically polarized. The absolute ISRF (or collection efficiency) can be deduced by calibrating S exp * ( λ ) at a fixed wavelength such as λ = 810 nm in our experiments.

Tables (1)

Tables Icon

Table 1 Parametric fluorescence efficiency η = 2Ns/Np for 810 ± 0.5 nm

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω s + ω i ,
k p = k s + k i ,
n p = n s cos ( θ s ) ,
n ˜ ( θ m , λ ) = ( cos ( θ m ) 2 n o ( λ ) 2 + sin ( θ m ) 2 n e ( λ ) 2 ) 1 2 .
Φ = exp ( 1 2 W 2 ( Δ k x 2 + Δ k y 2 ) ) ( sin ( 1 2 L Δ k z ) 1 2 L Δ k z ) 2 = exp ( 1 2 κ 2 W 2 ) sinc 2 ( 1 2 L Δ k z ) .
Δ θ FWHM ( θ s ) = 2 × 0.886 π L × | Δ k z / θ s | 2.783 × n s L × k s × θ s ,
Δ λ FWHM ( λ s ) = 2 × 0.886 π L × | Δ k z / λ s | 0.443 × λ s 2 L × n s cos ( θ s / n s ) ,
N s ( ω s , κ s ) = d eff 2 ω s ω i ω p L 2 N p 2 π 4 c 3 ε 0 n s n i n p d ω s d 2 κ s d 2 ξ exp ( 1 2 ξ 2 ) sinc 2 ( 1 2 L Δ k z ) ,
N s = d eff 2 L ω s 2 ω i 2 π c 4 ε 0 n p 2 N p d ω s = ( 2 π ) 4 2 c d eff 2 L ε 0 n p 2 λ s 4 λ i 2 N p d λ s .
Δ k z = k s z + k i z k p z = k s 2 κ s 2 + k i 2 κ i 2 k p z , and κ = κ s + κ i .
N s ( ω s , κ s ) = d eff 2 ω s ω i ω p L 2 N p 8 π 4 c 3 ε 0 n s n i n p d ω s d 2 κ s d 2 ξ i exp ( 1 2 | ξ s + ξ i | 2 ) sinc 2 ( 1 2 L Δ k z )
d 2 ξ i exp ( ξ s 2 + ξ i 2 2 ξ s ξ i cos ( φ ) 2 ) ξ i d ξ i exp ( ( ξ s ξ i ) 2 2 ) d φ exp ( ξ s ξ i φ 2 2 ) 2 π d ξ i exp ( ( ξ s ξ i ) 2 2 ) .
N s ( ω s , κ s , φ ) = d eff 2 ω s ω i ω p L 2 N p 8 π 4 c 3 ε 0 n s n i n p 2 π d ω s κ s d κ s d ϕ d ξ i e 1 2 ( ξ s ξ i ) 2 sinc 2 ( 1 2 L Δ k z ) ,
N s ( λ s , θ s ) = 2 π 2 π d eff 2 ω p L 2 N p ε 0 n s n i n p λ s 5 λ i sin ( 2 θ s ) d λ s d θ s d ξ i e 1 2 ( ξ s ξ i ) 2 sinc 2 ( L Δ k z 2 ) .

Metrics