Abstract

The effect of donor film thickness and laser beam fluence on the size of laser-induced forward transfer (LIFT) spots is studied to achieve sub-100 nm features. A 130 fs, 800 nm laser is focused on ultrathin Cr films, and the transfer and ablation thresholds of these films at various thicknesses are determined. The minimum transfer spot size decreases with decreasing donor film thickness and incident laser fluence. Minimum LIFT spots of 70-450 nm diameter are obtained from films of 20-80 nm thickness, respectively. The 70 nm diameter transfer spots obtained from sputtered continuous films are the smallest to date.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
    [CrossRef]
  2. Q. Wang, “Lateral resolution in laser induced forward transfer,” MSc Thesis, University of Alberta, 2009.
  3. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
    [CrossRef]
  4. V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
    [CrossRef]
  5. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
    [CrossRef]
  6. C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
    [CrossRef]
  7. I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).
  8. I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
    [CrossRef]
  9. H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
    [CrossRef]
  10. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
    [CrossRef]
  11. S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
    [CrossRef]
  12. S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
    [CrossRef]
  13. I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
    [CrossRef]
  14. F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
    [CrossRef]
  15. D. P. Banks, “Femtosecond laser induced forward transfer techniques for the deposition of nanoscale, intact, and solid-phase material,” PhD Dissertation, University of Southampton, 2008.
  16. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  17. D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
    [CrossRef] [PubMed]
  18. J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
    [CrossRef]
  19. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
    [CrossRef]
  20. D. B. Macleod, “On a relation between surface tension and density,” Trans. Faraday Soc.19(July), 38 (1923).
    [CrossRef]
  21. B. N. Chapman, “Thin-film adhesion,” J. Vac. Sci. Technol.11(1), 106 (1974).
    [CrossRef]
  22. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]

2013

V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
[CrossRef]

2012

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

2010

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

2008

2006

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

2005

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

1998

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
[CrossRef] [PubMed]

1995

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

1992

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

1989

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

1988

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

1987

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

1986

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
[CrossRef]

1974

B. N. Chapman, “Thin-film adhesion,” J. Vac. Sci. Technol.11(1), 106 (1974).
[CrossRef]

1923

D. B. Macleod, “On a relation between surface tension and density,” Trans. Faraday Soc.19(July), 38 (1923).
[CrossRef]

Adrian, F. J.

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
[CrossRef]

Arnold, D.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Banks, D. P.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
[CrossRef] [PubMed]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Bohandy, J.

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
[CrossRef]

Chakraborty, S.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Chakravorty, D.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Chang-Jian, S.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

Chapman, B. N.

B. N. Chapman, “Thin-film adhesion,” J. Vac. Sci. Technol.11(1), 106 (1974).
[CrossRef]

Cheng, J.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

Chichkov, B. N.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Djurisic, A. B.

Dlott, D.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Doxtader, M.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Eason, R. W.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
[CrossRef] [PubMed]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Elazar, J. M.

Ellis, E.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Fogarassy, E.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

Foley, D.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Fotakis, C.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Fuchs, C.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

Ganguly, P.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Grigoropoulos, C.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Grivas, C.

D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
[CrossRef] [PubMed]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Grosu, V.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

Hauchecorne, G.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

Ho, J.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

Jette, A. N.

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

Jones, C. L.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

Kalpouzos, C.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

Kaur, K. S.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Kerherve, F.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
[CrossRef]

Kiyan, R.

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Konov, V.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Lee, I.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Macleod, D. B.

D. B. Macleod, “On a relation between surface tension and density,” Trans. Faraday Soc.19(July), 38 (1923).
[CrossRef]

Mailis, S.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Majewski, M. L.

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Papazoglou, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

Perriere, J.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

Pimenov, S.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

Rakic, A. D.

Sakata, H.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Sametoglu, V.

V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
[CrossRef]

Sauer, V.

V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
[CrossRef]

Shafeev, G.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

Smolin, A.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

Sung, C.

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

Tolbert, W.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

Tsui, Y. Y.

V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
[CrossRef]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Vainos, N.

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Vodolaga, B.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

Wakaki, M.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Willis, D. A.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

Ying, Y. J.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Yokoyama, E.

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Zergioti, I.

D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
[CrossRef] [PubMed]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Zergiotti, I.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergiotti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, “Laser-induced forward transfer of TiO-Au nanocomposite films for maskless patterning,” Appl. Phys. Lett.86(11), 114104 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. L. Jones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

V. Sametoglu, V. Sauer, and Y. Y. Tsui, “Nanoscale laser-induced forward transfer through patterned Cr films,” Appl. Phys., A Mater. Sci. Process.110(4), 823–827 (2013).
[CrossRef]

I. Zergioti, S. Mailis, N. Vainos, P. Papakonstantinou, C. Kalpouzos, C. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Appl. Surf. Sci.

S. Pimenov, G. Shafeev, A. Smolin, V. Konov, and B. Vodolaga, “Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films,” Appl. Surf. Sci.86(1-4), 208–212 (1995).
[CrossRef]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005).
[CrossRef]

J. Appl. Phys.

J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys.63(4), 1158 (1988).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538 (1986).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457 (1989).
[CrossRef]

J. Imaging Sci. Technol.

I. Lee, W. Tolbert, D. Dlott, M. Doxtader, D. Foley, D. Arnold, and E. Ellis, “Dynamics of laser ablation transfer imaging investigated by ultrafast microscopy,” J. Imaging Sci. Technol.36, 180 (1992).

J. Vac. Sci. Technol.

B. N. Chapman, “Thin-film adhesion,” J. Vac. Sci. Technol.11(1), 106 (1974).
[CrossRef]

J. Vac. Sci. Technol. B

F. J. Adrian, J. Bohandy, B. F. Kim, and A. N. Jette, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B5(5), 1490 (1987).
[CrossRef]

Nanotechnology

S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology17(5), 1184–1187 (2006).
[CrossRef]

Opt. Express

Trans. Faraday Soc.

D. B. Macleod, “On a relation between surface tension and density,” Trans. Faraday Soc.19(July), 38 (1923).
[CrossRef]

Other

D. P. Banks, “Femtosecond laser induced forward transfer techniques for the deposition of nanoscale, intact, and solid-phase material,” PhD Dissertation, University of Southampton, 2008.

Q. Wang, “Lateral resolution in laser induced forward transfer,” MSc Thesis, University of Alberta, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Average size of the donor spots (hollow shapes) on the Cr film and their respective deposition spots (filled shapes) on the acceptor as a function of applied laser fluence for donor film thickness of 80 nm, 60 nm, 40 nm, and 20 nm. The area enclosed in the dotted box is enlarged in (b). The dotted line is to guide the eye between data sets. The semi-transparent bands range from the ‘transfer’ thresholds (right edge) to the ‘ablation’ thresholds (left edge). The error bars are calculated from the standard of deviation of the size measurements.

Fig. 2
Fig. 2

(a) Comparison of sputtering and evaporation film production techniques in terms of transfer and ablation energy thresholds versus Cr film thickness; it exhibits insignificant difference. Naturally, the ablation threshold is slightly less than the transfer threshold. (b) Average of minimal transfer spot sizes as a function of donor film thickness produced by sputtering and evaporation techniques. The purple lines signify the average of both values.

Fig. 3
Fig. 3

SEM images of typical donor film spots on (a) a 80 nm film at high fluence (404 mJ/cm2) and (b) a 20 nm film at threshold fluence. SEM images of typical representatives of the deposited Cr spots from continuous films (made by sputtering) of two examples [(c) and (d)] of 80 nm film at high fluence (404 mJ/cm2), and at transfer thresholds of (e) 80 nm, (f) 60 nm, (g) 40 nm, and (h) 20 nm thick films.

Fig. 4
Fig. 4

(a) Two consecutive Cr spots transferred from a 20 nm thick continuous film and their zoomed images with (b) 66 nm and (c) 78 nm diameters imaged under an SEM. (d) The upper Cr spot in (a) is imaged under an AFM, and (e) its lateral line profile is displayed.

Tables (1)

Tables Icon

Table 1 Transfer and ablation thresholds of evaporated and sputtered films

Metrics