Abstract

We demonstrate the capability to control the ripple periodicity on polycrystalline ZnO films by applying temporally delayed femtosecond double pulses. It is shown that there is a characteristic pulse separation time for which one can switch from low- to high- spatial-frequency ripple formation. Results are interpreted based on the relation of the characteristic delay time with the electron-phonon relaxation time of the material. Our results indicate that temporal pulse shaping can be advantageously used as a mean to control the periodic nanoripples’ formation and thus the outcome of laser assisted nanofabrication process, which is desirable for the applications of nanopatterned transparent semiconductors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).
  2. D. Bäuerle, Laser Processing and Chemistry (Springer, 1986).
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  5. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  6. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  7. E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
    [Crossref]
  8. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  9. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
    [Crossref]
  10. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  11. M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys. 73(7), 3516–3524 (1993).
    [Crossref]
  12. M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
    [Crossref]
  13. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  14. E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
    [Crossref]
  15. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
    [Crossref]
  16. R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
    [Crossref]
  17. A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
    [Crossref] [PubMed]
  18. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
    [Crossref]
  19. M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
    [Crossref] [PubMed]
  20. V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
    [Crossref]
  21. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453, 501–505 (2004).
    [Crossref]
  22. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
    [Crossref]
  23. I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
    [Crossref]
  24. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
    [Crossref]
  25. P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
    [Crossref]
  26. R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
    [Crossref]
  27. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
    [Crossref]
  28. Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
    [Crossref]
  29. J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
    [Crossref]
  30. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  31. C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
    [Crossref]
  32. M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
    [Crossref]
  33. E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
    [Crossref]
  34. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

2012 (2)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

2011 (1)

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

2010 (2)

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

2009 (5)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

2008 (2)

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
[Crossref] [PubMed]

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

2007 (2)

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

2006 (1)

P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
[Crossref]

2005 (4)

I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[Crossref]

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

2004 (4)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453, 501–505 (2004).
[Crossref]

2003 (3)

R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (2)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1999 (2)

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

1993 (1)

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys. 73(7), 3516–3524 (1993).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Armas, M. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Banks, P. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Barmina, E. V.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

Bauer, T.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Betz, G.

V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
[Crossref]

Bian, Z. Q.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Bolle, M.

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys. 73(7), 3516–3524 (1993).
[Crossref]

Bonse, J.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Bulgakova, N. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

Burakov, I. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Campbell, E. M.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Carcia, P. F.

P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
[Crossref]

Cheng, Y.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Chichkov, B. N.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Chowdhury, I. H.

I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[Crossref]

Chu, J. B.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Dijkhuis, J. I.

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

Dodell, A. L.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453, 501–505 (2004).
[Crossref]

Fallnich, C.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Feng, D. H.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Forsman, A. C.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Fotakis, C.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
[Crossref] [PubMed]

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

Frischauf, I.

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

Gray, D.

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C. L.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Heitz, J.

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Hertel, I. V.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hoffman, R. L.

R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
[Crossref]

Huang, M.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Huang, S. M.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Husinsky, W.

V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
[Crossref]

Hwang, D. K.

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

Itina, T. E.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Jia, T. Q.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Kamlage, G.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Klini, A.

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Korte, F.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Koudoumas, E.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

Kuis, T.

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

Lazare, S.

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys. 73(7), 3516–3524 (1993).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Li, C. B.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

Li, X. D.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Li, X. X.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Lim, J. H.

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

Liu, J.

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
[Crossref] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Manousaki, A.

McLean, R. S.

P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
[Crossref]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

Mermillod-Blondin, A.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

Nolte, S.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Norris, B. J.

R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
[Crossref]

Oh, M. S.

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

Olbrich, M.

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Pan, Q. M.

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

Park, S. J.

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Perry, M. D.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

Qin, L. M.

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

Qiu, J. R.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rebollar, E.

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Reilly, M. H.

P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
[Crossref]

Romanin, C.

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Rosenfeld, A.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Schmidt, V.

V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
[Crossref]

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453, 501–505 (2004).
[Crossref]

Serkov, A. A.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

Shafeev, G. A.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Spyridaki, M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

Stoian, R.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Stolyarov, I. N.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

Stolyarov, V. N.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

Stoof, H. T. C.

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

Stratakis, E.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, H. Y.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Sun, Z.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Tzanetakis, P.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

Versteegh, M. A. M.

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Wager, J. F.

R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
[Crossref]

Wagner, T.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Wang, H. B.

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

Wang, X. F.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Weiner, A. M.

I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[Crossref]

Welling, H.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

Winkler, S. W.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Xu, N. S.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, S. Z.

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Xu, X. F.

I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[Crossref]

Xu, Z. Z.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Yin, X. J.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Zhang, D. W.

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Zhao, F. L.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

ACS Nano (1)

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl Phys A-Mater (3)

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater 69, S7–S11 (1999).

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater 106(1), 1–4 (2012).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater 77, 265–269 (2003).

Appl. Phys. Lett. (5)

I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[Crossref]

P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett. 88(12), 123509 (2006).
[Crossref]

R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
[Crossref]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[Crossref]

M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett. 92(1), 013901 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process. 95(3), 849–855 (2009).
[Crossref]

Appl. Surf. Sci. (1)

V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci. 197, 145–155 (2002).
[Crossref]

Electrochim. Acta (1)

Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta 55(20), 5780–5785 (2010).
[Crossref]

J. Appl. Phys. (4)

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys. 73(7), 3516–3524 (1993).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys. 40(22), R387–R412 (2007).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Eng. (1)

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44(5), 051106 (2005).
[Crossref]

Opt. Express (1)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. B (3)

M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B 84(3), 035207 (2011).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69(5), 054102 (2004).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Phys. Rev. Lett. (4)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett. 103(19), 195002 (2009).
[Crossref] [PubMed]

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[Crossref]

Quantum Electron. (1)

E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron. 40(11), 1012–1020 (2010).
[Crossref]

Solid State Commun. (1)

C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun. 136(7), 389–394 (2005).
[Crossref]

Thin Solid Films (2)

E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453, 372–376 (2004).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453, 501–505 (2004).
[Crossref]

Other (1)

D. Bäuerle, Laser Processing and Chemistry (Springer, 1986).

Supplementary Material (5)

» Media 1: JPG (1145 KB)     
» Media 2: JPG (1232 KB)     
» Media 3: JPG (1023 KB)     
» Media 4: JPG (777 KB)     
» Media 5: JPG (553 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of the ZnO spots obtained upon irradiation (a) close to the damage threshold using a fluence of 0.55 J/cm2 and (b) above the damage threshold using a fluence of 0.92 J/cm2. (c) Graph of the ripples period versus the irradiation fluence.

Fig. 2
Fig. 2

SEM images of different spots for irradiation with 15, 20 and 50 sequences of two identical pulses of 1.1 J/cm2, at various time delays.

Fig. 3
Fig. 3

The corresponding dependence of different ripple periodicities on pulse delay time. Switch between LSFRs and MSFR/HSFRs occurs via proper variation of the pulse separation time. (a) Spots irradiated with a fluence of 0.55 J/cm2 and zero pulse delay. (b), (c) fluence of 1.1 J/cm2 with and zero pulse and 1 ps time delay respectively. (d) Ripples period vs pulse delay for 15 laser pulses and fluence of 1.1 J/cm2. Around 500 fs periodicity changes from LSFR to MSFR.

Fig. 4
Fig. 4

Two scan lines fabricated at (a) zero and (b) 1 ps delay times. The periodicity of the respective nanopatterns changes from ~650nm to ~220nm.

Fig. 5
Fig. 5

Dependence of the LSFR, HSFR + MSFR and total spot areas on delay time.

Metrics