Abstract

The present study reports that isothermal phase transition induced by photoisomerization of azobenzene liquid crystals (azo-LCs) from trans- to cis-isomers results in the dissolution of poly(N-vinylcarbazole) (PVK) into azo-LCs. Transparent (scattering) states can be demonstrated using uniform (rough) morphologies of PVK generated by slow (rapid) phase separation of PVK and azo-LCs from cis- to trans-isomers. The PVK films were examined in detail using scanning electron microscopy. Scattering performance resulting from the rough PVK surface induced micron-sized LC domains, and transparent performance resulting from the reformed uniform PVK surface can be optically and reversibly switched. Finally, all-optically controllable and highly efficient (contrast ratio of 370:1) scattering mode light modulators based on azo-LCs and PVK films were demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
    [CrossRef]
  2. R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
    [CrossRef]
  3. H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
    [CrossRef]
  4. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
    [CrossRef] [PubMed]
  5. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
    [CrossRef] [PubMed]
  6. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
    [CrossRef]
  7. A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys.66(11), 5278–5284 (1989).
    [CrossRef]
  8. Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
    [CrossRef]
  9. Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express20(15), 16777–16784 (2012).
    [CrossRef]
  10. Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinyl carbazole) films-coated liquid crystal cell,” Opt. Express20(24), 26252–26260 (2012).
    [CrossRef] [PubMed]
  11. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
    [CrossRef]
  12. H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
    [CrossRef]
  13. F. M. Leslie, “Continuum theory for nematic liquid crystals,” Contin. Mech. Thermodyn.4(3), 167–175 (1992).
    [CrossRef]
  14. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
    [CrossRef]
  15. T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
    [CrossRef]
  16. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
    [CrossRef] [PubMed]
  17. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
    [CrossRef]
  18. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
    [CrossRef]
  19. A. Y. G. Fuh, Y. C. Liu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Isomerization-induced phase separation of a mixture of monomer, azobenzene, and liquid crystals,” Sci. Technol. Adv. Mater. (submitted).

2012 (2)

2009 (2)

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

2008 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

2007 (3)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

2004 (2)

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

1992 (2)

F. M. Leslie, “Continuum theory for nematic liquid crystals,” Contin. Mech. Thermodyn.4(3), 167–175 (1992).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

1990 (1)

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

1989 (1)

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys.66(11), 5278–5284 (1989).
[CrossRef]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

1978 (1)

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Bao, R.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Caporaletti, O.

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys.66(11), 5278–5284 (1989).
[CrossRef]

Chen, Y. D.

Cheng, K. T.

Chien, L. C.

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Doane, J. W.

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Fuh, A. Y. G.

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Hervet, H.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Hoke, L.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

Horiuchi, S.

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Hrozhyk, U.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Ikeda, T.

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Karanjit, D. B.

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Kedziora, G.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

Kimball, B.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

Kimball, B. R.

Kurihara, S.

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Leslie, F. M.

F. M. Leslie, “Continuum theory for nematic liquid crystals,” Contin. Mech. Thermodyn.4(3), 167–175 (1992).
[CrossRef]

Lin, Y. H.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
[CrossRef]

Liu, C. K.

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

A. Y. G. Fuh, Y. C. Liu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Isomerization-induced phase separation of a mixture of monomer, azobenzene, and liquid crystals,” Sci. Technol. Adv. Mater. (submitted).

Liu, C. M.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Liu, Y. C.

A. Y. G. Fuh, Y. C. Liu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Isomerization-induced phase separation of a mixture of monomer, azobenzene, and liquid crystals,” Sci. Technol. Adv. Mater. (submitted).

Nersisyan, S.

Ren, H.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

Rondelez, F.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Serak, S.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Steeves, D. M.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Tabiryan, N.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

Tazuke, S.

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Ting, C. L.

Urbach, W.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Wu, B. G.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Wu, S. T.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

Yang, D. K.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Zumer, S.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Adv. Funct. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater.17(11), 1735–1742 (2007).
[CrossRef]

Adv. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater.19(20), 3244–3247 (2007).
[CrossRef]

Appl. Phys. Express (1)

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett.84(20), 4083–4085 (2004).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Contin. Mech. Thermodyn. (1)

F. M. Leslie, “Continuum theory for nematic liquid crystals,” Contin. Mech. Thermodyn.4(3), 167–175 (1992).
[CrossRef]

J. Appl. Phys. (2)

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys.66(11), 5278–5284 (1989).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys.92(2), 797–800 (2002).
[CrossRef]

J. Chem. Phys. (1)

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Macromolecules (1)

T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, “Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. Photochemically induced isothermal phase transition behaviors,” Macromolecules23(1), 42–48 (1990).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor-acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008).
[CrossRef]

Nature (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (1)

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater. (1)

A. Y. G. Fuh, Y. C. Liu, K. T. Cheng, C. K. Liu, and Y. D. Chen, “Isomerization-induced phase separation of a mixture of monomer, azobenzene, and liquid crystals,” Sci. Technol. Adv. Mater. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Images of the LC cell observed under a crossed-polarized optical microscope and photographed by a camera; (a)-(b) Scattering state obtained by green light illumination (252 mW/cm2 for 120 s). (c)-(d) Transparent isotropic state achieved by UV light illumination (7.4 mW/cm2 for 120 s; photo-induced isothermal phase transition). (e)-(f) The isotropic phase LC cell after dark relaxation for 24 h, transferred to nematic phase (transparent state). The distance between the LC cell and background paper in (b), (d), (f) is about 8 mm.

Fig. 2
Fig. 2

Configuration of the all-optically controllable scattering mode light modulator of (a) fresh transparent LC cell; (b) transparently isotropic state obtained by shinning with UV light; (c) stable scattering state obtained by rapid phase separation by green light illumination; (d) stably transparent state achieved by slow phase separation via dark relaxation.

Fig. 3
Fig. 3

Dynamic transmittances of a transparent LC cell (cis-azo-LCs dominant, prepared by illumination with UV light at an intensity of 7.4 mW/cm2 for 120 s) with the illumination duration and various green laser intensities of (I) 320, (II) 252, (III) 184, (IV) 130, and (V) 98 mW/cm2.

Fig. 4
Fig. 4

Dynamic transmittances of the scattering LC cell (prepared by illumination with a DPSS laser at an intensity of 98 mW/cm2 for 60 s) with the illumination duration and various UV intensities of (I) 37, (II) 32, (III) 19, (IV) 15, (V) 11 mW/cm2.

Fig. 5
Fig. 5

Transmission variations of the transparent LC cell (prepared by illumination with UV light at an intensity of 7.4 mW/cm2 for 120 s) kept indoors at room temperature after the UV light is switched off (dark relaxation).

Fig. 6
Fig. 6

Gray-scale images of the LC cell obtained using a digital camera after UV irradiation (7.4 mW/cm2) of the scattering mode LC cell (prepared by illumination with a DPSS laser at an intensity of 98 mW/cm2 for 60 s) for (a) 15, (b) 30, (c) 60, and (d) 90 s.

Fig. 7
Fig. 7

(a) Top-view SEM image of initially coated PVK surface. Top-view SEM images of the reformed PVK surfaces of LC cells treated with (b) natural cooling (particular TIPS); green light illumination 98 mW/cm2 for (c) 60 s and (d) 30 s; (e) UV illumination (7.4 mW/cm2 for 120 s) following by dark relaxation (24 h); (f)–(h) UV illumination (7.4 mW/cm2) of the scattering LC cells for 72, 60, and 54 s (gray-scales).

Metrics