Abstract

In this paper, self-organized microgratings are fabricated in SrTiO3 crystal just by scanning the focus of a tightly-focused linearly-polarized femtosecond laser beam to form a single line. The polarization direction of the laser beam is rotated by a λ/2 waveplate to check the effect of the polarization azimuth on the micrograting morphology. Fourier analyzing of the microscopic images of the microgratings indicates that the polarization plane azimuth of the laser beam does have influence on the microgratings in the aspects of groove orientation and groove spacing. A possible mechanism of polarization dependence is also proposed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
    [CrossRef]
  2. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.26(1), 19–21 (2001).
    [CrossRef] [PubMed]
  3. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
    [CrossRef] [PubMed]
  4. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
    [CrossRef] [PubMed]
  5. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
    [CrossRef] [PubMed]
  6. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
    [CrossRef]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  8. S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
    [CrossRef] [PubMed]
  9. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
    [CrossRef] [PubMed]
  10. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
    [CrossRef]
  11. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
    [CrossRef] [PubMed]
  12. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
    [CrossRef] [PubMed]
  13. E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Gauss-Bessel pulses,” Opt. Lett.31(1), 80–82 (2006).
    [CrossRef] [PubMed]
  14. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36(3), 325–327 (2011).
    [CrossRef] [PubMed]
  15. X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
    [CrossRef]
  16. J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
    [CrossRef]
  17. J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
    [CrossRef] [PubMed]
  18. W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express10(14), 603–608 (2002).
    [CrossRef] [PubMed]
  19. D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
    [CrossRef]
  20. P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
    [CrossRef] [PubMed]
  21. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25(22), 1669–1671 (2000).
    [CrossRef] [PubMed]

2013 (2)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

2011 (4)

2008 (2)

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

2007 (2)

2006 (3)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Gauss-Bessel pulses,” Opt. Lett.31(1), 80–82 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (1)

Akturk, S.

Audouard, E.

Bellouard, Y.

Beresna, M.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Bricchi, E.

Chen, D.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

Cheng, Y.

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Corkum, P. B.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Fan, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Fujita, K.

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Gaizauskas, E.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Gecevicius, M.

Gong, Q.

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Hayashi, K.

He, F.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Hertel, I. V.

Hirao, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Hongler, M. O.

Hu, X.

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
[CrossRef] [PubMed]

Huot, N.

Itoh, K.

Jarutis, V.

Juodkazis, S.

E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Gauss-Bessel pulses,” Opt. Lett.31(1), 80–82 (2006).
[CrossRef] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Kanehira, S.

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Kazansky, P. G.

Klappauf, B. G.

Landon, S.

Li, Y.

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

Liao, Y.

Liu, C.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Liu, D.

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

Luo, F.

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Mauclair, C.

Mermillod-Blondin, A.

Midorikawa, K.

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Misawa, H.

E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Gauss-Bessel pulses,” Opt. Lett.31(1), 80–82 (2006).
[CrossRef] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Miura, K.

Mizeikis, V.

Myiamoto, I.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Nishii, J.

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Qian, B.

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

Qiao, L.

Qiu, J.

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Qiu, J. R.

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Rajeev, P. P.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Rayner, D. M.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Rosenfeld, A.

Sakakura, M.

Shen, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

Shimotsuma, Y.

Si, J. H.

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Simova, E.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Song, J.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
[CrossRef] [PubMed]

Stoian, R.

Su, L.

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

Sugioka, K.

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Sun, H.

Svirko, Y.

Taylor, R. S.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Toma, T.

Vanagas, E.

Wang, X.

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
[CrossRef] [PubMed]

Watanabe, W.

Wei, X.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Xu, J.

Xu, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Xu, Z. Z.

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

J. Song, X. Wang, X. Hu, J. Xu, Y. Liao, H. Sun, J. Qiu, and Z. Z. Xu, “Orientation-controllable self-organized microgratings induced in the bulk SrTiO3 crystal by a single femtosecond laser beam,” Opt. Express15(22), 14524–14529 (2007).
[CrossRef] [PubMed]

Yamada, K.

Yang, H.

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

Zhang, P.

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

Zhao, Q.

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

Zhu, C.

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

Appl. Phys. B (1)

D. Liu, Y. Li, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond damage threshold inside fused silica,” Appl. Phys. B91(3-4), 597–599 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Song, F. Luo, X. Hu, Q. Zhao, J. Qiu, and Z. Z. Xu, “Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens,” J. Phys. D Appl. Phys.44(49), 495402 (2011).
[CrossRef]

Lab Chip (1)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

X. Hu, B. Qian, P. Zhang, X. Wang, L. Su, J. Qiu, and C. Zhu, “Self-formed microvoid array perpendicular to the femtosecond laser propagation direction in CaF2 crystals,” Laser Phys. Lett.5(5), 394–397 (2008).
[CrossRef]

Nano Lett. (1)

S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (7)

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
[CrossRef] [PubMed]

E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Gauss-Bessel pulses,” Opt. Lett.31(1), 80–82 (2006).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36(3), 325–327 (2011).
[CrossRef] [PubMed]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.25(22), 1669–1671 (2000).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.26(1), 19–21 (2001).
[CrossRef] [PubMed]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73(21), 214101 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic graph for fabrication method of the self-organized microgratings.

Fig. 2
Fig. 2

Self-organized microgratings induced by the polarization states with azimuth angle φ of 0° (a), 45° (b), 90° (c).

Fig. 3
Fig. 3

Two-dimensional Fourier transformation analysis of the microscopic images in Figs. 2(a)-2(c).

Fig. 4
Fig. 4

Schematic graph for the formation process of self-organized microgratings. The arrows labeled with K and S respectively stand for the laser propagation direction and the scanning direction.

Fig. 5
Fig. 5

Effect of polarization direction on the void array induced in the bulk of SrTiO3 crystal. Polarization azimuth angle φ is 0° (a) and 90°(b)..

Fig. 6
Fig. 6

Polarization dependence of void arrays induced in fused silica by tightly focusing laser beam with a pulse energy of 35 μJ at a focal depth of 400 μm for a stationary irradiation time of 1/4 s.

Tables (1)

Tables Icon

Table 1 The grating parameters calculated by detailed analysis of the Fourier-transformed results of Fig. 3.

Metrics