Abstract

We propose a novel fiber-based free-space optical (FSO) coherent receiver for inter-satellite communication. The receiver takes advantage of established fiber-optic components and utilizes the fine-pointing subsystem installed in FSO terminals to minimize the influence of satellite platform vibrations. The received beam is coupled to a single-mode fiber, and the coupling efficiency of the system is investigated both analytically and experimentally. A receiving sensitivity of −38 dBm is obtained at the forward error correction limit with a transmission rate of 22.4 Gbit/s. The proposed receiver is shown to be a promising component for inter-satellite optical communication.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tolker-Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Free-Space Laser Communication Technologies XIV, G. S. Mecherle, ed., Proc. SPIE 4635, 1–15 (2002).
    [CrossRef]
  2. M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
    [CrossRef]
  3. R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook,” in Free-Space Laser Communication Technologies XVII, G. S. Mecherle, ed., Proc. SPIE 5712, 1–12 (2005).
    [CrossRef]
  4. Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.
  5. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett.16, 674–676 (2004).
    [CrossRef]
  6. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon.1, 279–307 (2009).
    [CrossRef]
  7. N. Cvijetic, D. Qian, J. Yu, Y. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol.28, 1218–1227 (2010).
    [CrossRef]
  8. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
    [CrossRef]
  9. P. J. Winzer and W. R. Leeb, “Fiber coupling efficiency for random light and its applications to lidar,” Opt. Lett.23, 986–988 (1998).
    [CrossRef]
  10. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44, 4946–4952 (2005).
    [CrossRef] [PubMed]
  11. S. Thibault and J. Lacoursiere, “Advanced fiber coupling technologies for space and astronomical applications,” in Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education,J. C. Armitage, R. A. Lessard, and G. A. Lampropoulos, eds., Proc. SPIE 5578, 40–51 (2004).
    [CrossRef]
  12. S. Arnon and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrationsanalog case,” Opt. Eng.36, 175–182 (1997).
    [CrossRef]
  13. H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.
  14. L. Liu, “Laser communications in space I optical link and terminal technology,” Chin. J. Lasers34, 1–18 (2007).
  15. S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
    [CrossRef]

2012 (1)

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

2010 (1)

2009 (2)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon.1, 279–307 (2009).
[CrossRef]

2007 (1)

L. Liu, “Laser communications in space I optical link and terminal technology,” Chin. J. Lasers34, 1–18 (2007).

2005 (2)

R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook,” in Free-Space Laser Communication Technologies XVII, G. S. Mecherle, ed., Proc. SPIE 5712, 1–12 (2005).
[CrossRef]

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44, 4946–4952 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Thibault and J. Lacoursiere, “Advanced fiber coupling technologies for space and astronomical applications,” in Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education,J. C. Armitage, R. A. Lessard, and G. A. Lampropoulos, eds., Proc. SPIE 5578, 40–51 (2004).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett.16, 674–676 (2004).
[CrossRef]

2002 (1)

T. Tolker-Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Free-Space Laser Communication Technologies XIV, G. S. Mecherle, ed., Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

2000 (1)

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

1998 (1)

1997 (1)

S. Arnon and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrationsanalog case,” Opt. Eng.36, 175–182 (1997).
[CrossRef]

Alexander, J. W.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Arnon, S.

S. Arnon and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrationsanalog case,” Opt. Eng.36, 175–182 (1997).
[CrossRef]

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Cvijetic, N.

D’Errico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Davidson, F. M.

Dikmelik, Y.

Gregory, M.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Heine, F.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

Hemmati, H.

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Hu, Y.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Huang, Y.

Jeganathan, M.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Jiang, H.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Kämpfner, H.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

Kopeika, N. S.

S. Arnon and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrationsanalog case,” Opt. Eng.36, 175–182 (1997).
[CrossRef]

Lacoursiere, J.

S. Thibault and J. Lacoursiere, “Advanced fiber coupling technologies for space and astronomical applications,” in Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education,J. C. Armitage, R. A. Lessard, and G. A. Lampropoulos, eds., Proc. SPIE 5578, 40–51 (2004).
[CrossRef]

Lange, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook,” in Free-Space Laser Communication Technologies XVII, G. S. Mecherle, ed., Proc. SPIE 5712, 1–12 (2005).
[CrossRef]

Lee, S.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Leeb, W. R.

Li, G.

Li, Z.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Liu, L.

L. Liu, “Laser communications in space I optical link and terminal technology,” Chin. J. Lasers34, 1–18 (2007).

Lutzer, M.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

Matsumoto, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Meyer, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

Oppenhaeuser, G.

T. Tolker-Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Free-Space Laser Communication Technologies XIV, G. S. Mecherle, ed., Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

Ortiz, G. G.

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

Qian, D.

Roberts, W. T.

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Smutny, B.

R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook,” in Free-Space Laser Communication Technologies XVII, G. S. Mecherle, ed., Proc. SPIE 5712, 1–12 (2005).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett.16, 674–676 (2004).
[CrossRef]

Thibault, S.

S. Thibault and J. Lacoursiere, “Advanced fiber coupling technologies for space and astronomical applications,” in Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education,J. C. Armitage, R. A. Lessard, and G. A. Lampropoulos, eds., Proc. SPIE 5578, 40–51 (2004).
[CrossRef]

Tolker-Nielsen, T.

T. Tolker-Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Free-Space Laser Communication Technologies XIV, G. S. Mecherle, ed., Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

Tong, S.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Wang, T.

Winzer, P. J.

Wright, M. W.

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Yu, J.

Zheng, Y.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Chin. J. Lasers (1)

L. Liu, “Laser communications in space I optical link and terminal technology,” Chin. J. Lasers34, 1–18 (2007).

Free-Space Laser Communication Technologies XII (1)

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” in Free-Space Laser Communication Technologies XII,G. S. Mecherle, ed., Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Free-Space Laser Communication Technologies XIV (1)

T. Tolker-Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Free-Space Laser Communication Technologies XIV, G. S. Mecherle, ed., Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

Free-Space Laser Communication Technologies XVII (1)

R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook,” in Free-Space Laser Communication Technologies XVII, G. S. Mecherle, ed., Proc. SPIE 5712, 1–12 (2005).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Select. Areas Commun.27, 1639–1645 (2009).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photonics Technol. Lett.16, 674–676 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (2)

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Lutzer, and R. Meyer, “Commercial optical inter-satellite communication at high data rates,” Opt. Eng.51, 031202 (2012).
[CrossRef]

S. Arnon and N. S. Kopeika, “Performance limitations of free-space optical communication satellite networks due to vibrationsanalog case,” Opt. Eng.36, 175–182 (1997).
[CrossRef]

Opt. Lett. (1)

Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education (1)

S. Thibault and J. Lacoursiere, “Advanced fiber coupling technologies for space and astronomical applications,” in Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education,J. C. Armitage, R. A. Lessard, and G. A. Lampropoulos, eds., Proc. SPIE 5578, 40–51 (2004).
[CrossRef]

Other (2)

H. Hemmati, G. G. Ortiz, W. T. Roberts, M. W. Wright, and S. Lee, “Flight transceiver,” in Deep Space Optical Communications,H. Hemmati, ed. (Academic, Pasadena, Calif., 2005), pp. 301–466.

Y. Zheng, H. Jiang, Y. Hu, S. Tong, and Z. Li, “Opto-mechanical structure design of the space optical hybrid,” in Proceedings of IEEE International Conference on Optoelectronics and Microelectronics(Institute of Electrical and Electronics Engineers, Changchun, 2012), pp. 303–307.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the fiber-based FSO coherent receiver system; the system consists of a telescope, fine-pointing subsystem, and a fiber-based coherent receiver (B/S: beam splitter; DAC: digital-to-analog converter; SMF: single-mode fiber; EDFA: erbium-doped fiber amplifier; LO: local oscillator; PBS: polarization beam splitter; BD: balance detector; ADC: analog-to-digital converter; DSP: digital signal processing).

Fig. 2
Fig. 2

The free-space to fiber coupling model.

Fig. 3
Fig. 3

Coupling efficiency as a function of the RMS normalized residual error with β = 1.12 and ε = 0.

Fig. 4
Fig. 4

Structure of the test-bed system. The same abbreviations as those for figure 1 are used (PSD: position sensitive device; PBC: polarization beam combiner).

Fig. 5
Fig. 5

Coupling efficiency with and without compensation for different telescope magnifications. A magnification of 0 indicates that no vibration is added and that the fiber is perfectly aligned.

Fig. 6
Fig. 6

BER performance of the receiver, simulating a telescope diameter of about 17cm with β = 1.32 and ε = 0.

Tables (1)

Tables Icon

Table 1 Comparison of state-of-the-art fine-pointing systems.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

η = P f P i = | A U i ( r ) U m * ( r ) d r | 2 | A U i ( r ) U i * ( r ) d r | 2
U i ( r ) = U i A ( r ) exp ( i k θ r )
A ( r ) = { 1 ε R r R 0 else
U m ( r ) = k w m 2 π f exp [ ( k w m 2 f ) 2 r 2 ]
η = 8 [ β ε 1 exp ( β 2 u 2 ) J 0 ( α u ) u d u ] 2
α = k R θ = π D θ λ
β = k w m R 2 f = π w m D 2 λ f
D = 2 R , diameter of the telescope
J 0 ( x ) = 1 2 π π π exp ( i x sin τ ) d τ
f ( θ ) = θ σ i 2 exp ( θ 2 2 σ i 2 )
f ( α ) = α σ α 2 exp ( α 2 2 σ α 2 ) , where σ α = π D σ i λ
η = 0 η ( α ) f ( α ) d α
S ( f ) = 160 μ rad 2 1 + ( f / f 0 ) 2 , where f 0 = 1 Hz

Metrics