Abstract

Nanoscale all-optical circuits driven by optical forces have broad applications in future communication, computation, and sensing systems. Because human society faces huge challenges of energy saving and emission reduction, it is very important to develop energy-efficient nano-optomechanical devices. Due to their high quality (Q) factors, resonance modes of cavities are capable of generating much larger forces than waveguide modes. Here we experimentally demonstrate the use of resonance modes of double-coupled one-dimensional photonic crystal cavities to generate bipolar optical forces. Attractive and repulsive forces of −6.2 nN and 1.9 nN were obtained with respective launching powers of 0.81 mW and 0.87 mW in the waveguide just before cavities. Supported by flexible nanosprings (spring constant 0.166 N/m), one cavity is pulled to (pushed away from) the other cavity by 37.1 nm (11.4 nm). The shifts of the selected resonance modes of the device are mechanically and thermally calibrated with an integrated nanoelectromechanical system actuator and a temperature-controlled testing platform respectively. Based on these experimentally-obtained relations, probe mode shifts due to the optomechanical effect are decoupled from those due to the thermo-optic effect. Actuated by the third-order even pump mode, the optomechanical shift of the second-order even probe mode is found to be about 2.5 times its thermal shift, indicating a highly efficient conversion of light energy to mechanical energy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
    [CrossRef]
  2. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
    [CrossRef] [PubMed]
  3. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  4. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
    [CrossRef] [PubMed]
  5. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
    [CrossRef]
  6. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
    [CrossRef] [PubMed]
  7. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
    [CrossRef]
  8. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
    [CrossRef] [PubMed]
  9. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
    [CrossRef]
  10. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
    [CrossRef] [PubMed]
  11. Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
    [CrossRef]
  12. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
    [CrossRef] [PubMed]
  13. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
    [CrossRef] [PubMed]
  14. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
    [CrossRef] [PubMed]
  15. H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
    [CrossRef]
  16. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express13(20), 8286–8295 (2005).
    [CrossRef] [PubMed]
  17. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
    [CrossRef] [PubMed]
  18. H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
    [CrossRef] [PubMed]
  19. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
    [CrossRef] [PubMed]
  20. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
    [CrossRef]
  21. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18(8), 8367–8382 (2010).
    [CrossRef] [PubMed]
  22. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
    [CrossRef] [PubMed]
  23. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
    [CrossRef]
  24. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
    [CrossRef] [PubMed]
  25. T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
    [CrossRef]
  26. F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
    [CrossRef]
  27. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
    [CrossRef]
  28. P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett.35(8), 1124–1126 (2010).
    [CrossRef] [PubMed]
  29. Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
    [CrossRef]
  30. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
    [CrossRef] [PubMed]

2013 (2)

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

2012 (8)

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

2011 (3)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

2010 (6)

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett.35(8), 1124–1126 (2010).
[CrossRef] [PubMed]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18(8), 8367–8382 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

2009 (9)

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

2007 (1)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

2005 (1)

Akkipeddi, R.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Baets, R.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Bourouina, T.

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Bouwmeester, D.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Bulu, I.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Cai, H.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

Capasso, F.

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Chau, F. S.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Chen, Y.

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

Chew, X.

De Vlaminck, I.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Deng, J.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Deotare, P. B.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

Fang, Q.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Frank, I. W.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

Fuhrmann, D. A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Ibanescu, M.

Ilic, R.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

Kim, H.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Krenner, H. J.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Kwong, D. L.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Lagae, L.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Li, H.

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

Li, M.

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Li, Q.

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Liu, A. Q.

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Lo, G. Q.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Loke, Y. C.

Loncar, M.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

Lonèar, M.

Maes, B.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

Noh, J.

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

Noh, J. W.

Painter, O.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
[CrossRef] [PubMed]

Petroff, P. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

Povinelli, M. L.

Qiu, M.

Quan, Q.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Reano, R. M.

Roels, J.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

Safavi-Naeini, A. H.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Smythe, E. J.

Su, Y.

Sugano, K.

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Sun, P.

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

Tabata, O.

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Tadesse, S.

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

Tang, X.

Thon, S. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Thourhout, D. V.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Tian, F.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

Tsuchiya, T.

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Ura, Y.

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Van Thourhout, D.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Wang, T.

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Wixforth, A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

Xu, K. J.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Yan, M.

Yu, M. B.

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Yu, Y. F.

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Zhang, J. B.

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

Zhang, Y.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

Zheng, J.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

Zhou, G.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009).
[CrossRef]

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012).
[CrossRef]

J. Microelectromech. Syst. (1)

T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012).
[CrossRef]

Nano Lett. (1)

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012).
[CrossRef] [PubMed]

Nat Commun (3)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012).
[CrossRef] [PubMed]

H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012).
[CrossRef] [PubMed]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009).
[CrossRef] [PubMed]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009).
[CrossRef] [PubMed]

Nat. Photonics (5)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007).
[CrossRef]

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010).
[CrossRef]

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

Nature (5)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of setup used to characterize the device. TLS, tunable laser source; EDFA, erbium doped fiber amplifier ; FP, fiber polarizer; FPC, fiber polarization controller; CUT, chip under test; OSA, optical spectrum analyzer. Inset: microscope image of the CUT. (b) Scanning electron microscope (SEM) image of the suspended structures in the central region of the device, where springs, rigid masses, and comb drives are annotated. (c) Magnified SEM image showing the double-coupled cavities with a central gap width of 144.2 nm.

Fig. 2
Fig. 2

(a) Experimentally-measured transmission spectrum of the fabricated double-coupled cavities shown in Fig. 1(c), where various resonance modes and propagating modes are marked. TEe,2, second-order even mode; TEo,3, third-order odd mode; TEe,3, third-order even mode; TEo,4, fourth-order odd mode; TEe,4, fourth-order even mode; TEo,5, fifth-order odd mode; TEe,5, fifth-order even mode. The spectrum is normalized to the highest transmission of TEe,4. (b) Calculated electric field profiles for TEe,2, TEo,3, TEe,3 and TEo,4. (c,d,e,f) detailed resonance peaks of TEe,2 (c), TEo,3 (d), TEe,3 (e) and TEo,4 (f) and their respective Lorentz fits. (g) Wavelength shifts of the TEe,2, TEo,3, TEe,3, and TEo,4 modes versus cavities’ gap width. Experimental results are plotted with discrete symbols and the solid lines are their respective fitted curves. (h) The optomechanical coupling coefficient gOM/2π versus cavities’ gap width.

Fig. 3
Fig. 3

(a) Transmission spectrum of the TEe,3 pump mode under different incident light powers (just before the cavities). Ordinate represents the power detected by OSA. (b,c) Tuned probe TEe,2 (b) and TEo,3 (c) by the TEe,3 pump mode at wavelength of 1569.33 nm with power of 0.81 mW. Magnitude of each peak is normalized by maximum of itself. (d) Transmission spectrum of the TEo,4 pump mode under different incident light powers (just before the cavities). Ordinate represents the power detected by OSA. (e,f) Tuned probe TEe,2 (e) and TEo,3 (f) by the TEo,4 pump mode at wavelength of 1574.59 nm with power of 0.87 mW. Magnitude of each peak is normalized by maximum of itself.

Fig. 4
Fig. 4

(a,b) Total shift, decoupled thermal shift, and optomechanical shift of the probe TEe,2 (a) and TEo,3 (b) pumped by the TEe,3 with various powers and tracked wavelengths. (c) Diminishing of gap width pumped by TEe,3 with various powers and tracked wavelengths. Attractive force generated by TEe,3 are calculated by Fopt = kopt × Δg, in which Fopt is optical force, kopt = 0.166 N/m is optical force related spring constant calculated by finite-element method (FEM) and Δg is change of gap width. (d,e) Total shift, decoupled thermal shift, and optomechanical shift of the probe TEe,2 (d) and TEo,3 (e) pumped by the TEo,4 with various powers and tracked wavelengths. (f) Enlarging of gap width pumped by TEo,4 with various powers and tracked wavelengths. Repulsive force generated by TEo,4 are calculated by Fopt = kopt × Δg.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ o T =Δ λ o Th +Δ λ o OM .
Δ λ e T =Δ λ e Th +Δ λ e OM =α×Δ λ o Th +β(Δ λ o OM )×Δ λ o OM .

Metrics