Abstract

In this work, we apply Mueller matrix polar decomposition (MMPD) method in a forward scattering configuration on anisotropic scattering samples and look for the physics origin of depolarization and retardance. Using Monte Carlo simulations on the sphere-cylinder birefringence model (SCBM), and forward scattering experiments on samples containing polystyrene microspheres, well-aligned glass fibers and polyacrylamide, we examine in detail the relationship between the MMPD parameters and the microscopic structure of the samples. The results show that the spherical scatterers and birefringent medium contribute to depolarization and retardance respectively, but the cylindrical scatterers contribute to both. Retardance due to the cylindrical scatterers changes with their density, size and order of alignment. Total retardance is a simple sum of both contributions when cylinders are in parallel to the extraordinary axis of birefringence.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt.11(5), 054031 (2006).
    [CrossRef] [PubMed]
  2. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
    [CrossRef]
  3. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
    [CrossRef] [PubMed]
  4. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
    [CrossRef] [PubMed]
  5. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
    [CrossRef] [PubMed]
  6. P. Shukla and A. Pradhan, “Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states,” Opt. Express17(3), 1600–1609 (2009).
    [CrossRef] [PubMed]
  7. M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
    [CrossRef] [PubMed]
  8. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
    [CrossRef] [PubMed]
  9. A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express19(2), 1582–1593 (2011).
    [CrossRef] [PubMed]
  10. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express21(12), 14120–14130 (2013).
    [CrossRef] [PubMed]
  11. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
    [CrossRef] [PubMed]
  12. H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
    [CrossRef] [PubMed]
  13. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
    [CrossRef] [PubMed]
  14. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express17(19), 16590–16602 (2009).
    [CrossRef] [PubMed]
  15. E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
    [CrossRef] [PubMed]
  16. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrix based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996).
    [CrossRef]
  17. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
    [CrossRef]
  18. R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
    [CrossRef]
  19. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
    [CrossRef] [PubMed]
  20. W. D. Yu and C. Y. Chu, Textile Physics, 2nd ed. (Donghua, 2009), pp. 175–197.
  21. B. Peng, T. Ding, and P. Wang, “Propagation of polarized light through textile material,” Appl. Opt.51(26), 6325–6334 (2012).
    [CrossRef] [PubMed]
  22. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

2013 (3)

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express21(12), 14120–14130 (2013).
[CrossRef] [PubMed]

2012 (2)

B. Peng, T. Ding, and P. Wang, “Propagation of polarized light through textile material,” Appl. Opt.51(26), 6325–6334 (2012).
[CrossRef] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (4)

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

2009 (5)

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

P. Shukla and A. Pradhan, “Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states,” Opt. Express17(3), 1600–1609 (2009).
[CrossRef] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express17(19), 16590–16602 (2009).
[CrossRef] [PubMed]

2008 (2)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

2007 (1)

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

2006 (2)

1996 (1)

Anastasiadou, M.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Antonelli, M. R.

Antonelli, M.-R.

Ben Hatit, S.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Benali, A.

Buddhiwant, P.

Cameron, B. D.

B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt.11(5), 054031 (2006).
[CrossRef] [PubMed]

Chipman, R. A.

Cohen, H.

De Martino, A.

A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Ding, T.

Du, E.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

Fallet, C.

Garcia-Caurel, E.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Gayet, B.

Ghosh, N.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

Guo, X.

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Guo, Y.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

Gupta, P. K.

He, H.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

He, Y.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

Ibrahim, B. H.

Jiang, X.

Li, D.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express17(19), 16590–16602 (2009).
[CrossRef] [PubMed]

Li, R. K.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, S. H.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, W.

Li, Y.

B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt.11(5), 054031 (2006).
[CrossRef] [PubMed]

Liao, R.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

Lu, S. Y.

Ma, H.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express17(19), 16590–16602 (2009).
[CrossRef] [PubMed]

Manhas, S.

Martino, A. D.

Moriyama, E. H.

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

Nazac, A.

Nezhuvingal, A.

B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt.11(5), 054031 (2006).
[CrossRef] [PubMed]

Novikova, T.

Ossikovski, R.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Peng, B.

Pierangelo, A.

Pradhan, A.

Shukla, P.

Singh, J.

Swami, M. K.

Validire, P.

Vitkin, I. A.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Wallenburg, M. A.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

Wang, P.

Weisel, R. D.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wood, M. F. G.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Yun, T.

Zeng, N.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett.35(14), 2323–2325 (2010).
[CrossRef] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express17(19), 16590–16602 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

J Biophotonics (1)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

J. Biomed. Opt. (7)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt.18(4), 046002 (2013).
[CrossRef] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt.17(12), 126016 (2012).
[CrossRef] [PubMed]

B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt.11(5), 054031 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Photon. Lasers .Med. (1)

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers .Med.2(2), 129–137 (2013).

Phys. Status Solidi., A Appl. Mater. Sci. (1)

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi., A Appl. Mater. Sci.205(4), 720–727 (2008).
[CrossRef]

Other (1)

W. D. Yu and C. Y. Chu, Textile Physics, 2nd ed. (Donghua, 2009), pp. 175–197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of forward Mueller matrix experiment set up. Light source is LED; P1, P2: polarizers; QW1, QW2: quarter wave plates; L1, L2: lenses. (b) Schematic of clamps used to strain the samples to induce birefringence, the direction of strain is vertical in the laboratory reference frame. The direction of glass fibers is 30° angle to the y-axis.

Fig. 2
Fig. 2

Mueller matrix polar decomposition: (a) Monte Carlo simulations and (b) experiments, in the forward direction, through a 1 × 2 × 4cm sample containing microspheres of 0.5μm radius embedded in polyacrylamide medium, the refractive index is 1.393. The results are shown for both clear (μs = 0cm−1) and turbid (μs = 22cm−1) samples.

Fig. 3
Fig. 3

Mueller matrix polar decomposition results using (a) Monte Carlo simulations on a layer of 5μm radius well aligned cylinders with fixed thickness and varying scattering coefficient, and (b) experiments on varying number of layers of glass fibers. In both cases, the refractive index of the surrounding media is 1.

Fig. 4
Fig. 4

Mueller matrix polar decomposition on the simulated results: (a) linear retardance (δ) and (b) depolarization (Δ) for different cylinder radius; (c) δ and Δ corresponding to different orientation distributions, the cylinder scattering coefficient is 45cm−1, the radius of the cylinder is 5μm. In all the simulations, the refractive index of the surrounding medium is 1.

Fig. 5
Fig. 5

Mueller matrix polar decomposition results using (a) simulation, the radius of cylinder is 5μm, cylinder scattering coefficient is 50cm−1, the refractive index of the surrounding media is 1. (b) experiment, 4 layers of glass fiber immersed in birefringent medium.

Fig. 6
Fig. 6

Mueller matrix polar decomposition (a) Monte Carlo simulation result, the radius of cylinder is 5μm, sphere and cylinder scattering coefficient are 20cm−1 and 50cm−1 respectively, the refractive index of the surrounding media is 1.393. (b) experiment result of 4 layers of glass fiber immersed in birefringent sample.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M= M Δ M R M D
D = 1 m 11 ( m 12 m 13 m 14 )
D= 1 m 11 m 12 2 + m 13 2 + m 14 2 .
Δ=1- | trace( m Δ ) | 3 ,0<Δ<1
R= cos -1 [ trace( M R ) 2 -1 ]
Ψ= tan -1 [ M R (3,2)- M R (2,3) M R (2,2)+ M R (3,3) ]
δ= cos -1 { [ M R (2,2)+ M R (3,3)] 2 + [ M R (3,2)- M R (2,3)] 2 -1}
δ b = 2πs n ¯ λ Δ n '
Δ n ' = n e ' (θ) n o = n o n e ( n o 2 sin 2 θ+ n e 2 cos 2 θ) 1/2 n o
M=( m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41 m42 m43 m44 ) = 1 2 ( HH+HV+VH+VV HH+HV-VH-VV PH+PV-MP-MM RH+RV-LH-LV HH-HV+VH-VV HH-HV-VH+VV PH-PV-MH-MV RH-RV-LH+LV HP-HM+VP-VM HP-HM-VP+VM PP-PM-MP+MM RP-RM-LP+LM VR+HR-LL-RL VL+HR-HL-VR ML+PR-PL-MR RR+LL-LR-RL )

Metrics