Abstract

The effects of substrates with technological interest for solar cell industry are examined on the plasmonic properties of Ag nanoparticles fabricated by dewetting technique. Both surface matching (boundary element) and propagator (finite difference time domain) methods are used in numerical simulations to describe plasmonic properties and to interpret experimental data. The uncertainty on the locations of nanoparticles by the substrate in experiment is explained by the simulations of various Ag nanoparticle configurations. The change in plasmon resonance due to the location of nanoparticles with respect to the substrate, interactions among them, their shapes, and sizes as well as dielectric properties of substrate are discussed theoretically and implications of these for the experiment are deliberated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  2. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
    [CrossRef]
  3. M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
    [CrossRef]
  4. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  5. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express18(16), 17322–17338 (2010).
    [CrossRef] [PubMed]
  6. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
    [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  9. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012).
    [CrossRef] [PubMed]
  10. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
    [CrossRef] [PubMed]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  12. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003).
    [CrossRef]
  13. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
    [CrossRef] [PubMed]
  14. J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
    [CrossRef]
  15. U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012).
    [CrossRef]
  16. A. Centeno, F. Xie, and N. Alford, “Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B28(2), 325–333 (2011).
    [CrossRef]
  17. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
    [CrossRef]
  18. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley-VCH, 2004).
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]

2012 (3)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012).
[CrossRef]

R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Centeno, F. Xie, and N. Alford, “Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B28(2), 325–333 (2011).
[CrossRef]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

2010 (4)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express18(16), 17322–17338 (2010).
[CrossRef] [PubMed]

2009 (2)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

2008 (2)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

2003 (2)

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

1998 (1)

Alford, N.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bianco, G. V.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Bruno, G.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Capezzuto, P.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Centeno, A.

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Djurisic, A. B.

Dunbar, R. B.

Elazar, J. M.

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Giangregorio, M. M.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Gray, S. K.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003).
[CrossRef]

Guler, U.

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Hohenester, U.

U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jung, J.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Klenk, R.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Krc, J.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Kupka, T.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003).
[CrossRef]

Larsen, A. N.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Losurdo, M.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Lux-Steiner, M. Ch.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Majewski, M. L.

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Nielsen, B. B.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Pedersen, K.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Pedersen, T. G.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Pfadler, T.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Rakic, A. D.

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Sacchetti, A.

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schmid, M.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Schmidt-Mende, L.

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Søndergaard, T.

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Topic, M.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Trügler, A.

U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012).
[CrossRef]

Turan, R.

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Xie, F.

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Comput. Phys. Commun. (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Nano Lett. (1)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010).
[CrossRef]

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003).
[CrossRef]

Science (1)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley-VCH, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The SEM images and the corresponding measured total reflection data of Ag NP decorated Si, SiO2, Si3N4, and ITO surfaces by dewetting method.

Fig. 2
Fig. 2

(a) The scattering cross section for a prolate spheroid. Principal axis ratio is defined for the starting Ag sphere with diameter D0 = 100 nm. (b) Scattering cross section as size of Ag sphere changes in homogenous medium of air. (c) Scattering cross section as the homogenous medium dielectric constant changes for an Ag sphere of diameter D = 100 nm.

Fig. 3
Fig. 3

Various positions of Ag nano sphere (sphere radius = 30 nm – blue triangles, 60 nm – green spheres, 90 nm – red stars) and ITO film. (a) Ag nano sphere is in Air (b) Ag nano sphere is on ITO film (c) Ag nano hemi-sphere is on ITO film (d) Ag nano sphere is immersed in ITO film.

Fig. 4
Fig. 4

Experimental and theoretical plasmon resonance changes as a function of NP diameter placed in (a) Si medium (b) SiO2 medium (c) Si3N4 medium (d) ITO medium. Different symbols show different NP locations.

Fig. 5
Fig. 5

The size distribution of Ag NPs on ITO surface is shown on the left. Inset displays the SEM image of it. On the right, the measured and the FDTD calculated scattering efficiencies are presented.

Fig. 6
Fig. 6

Interaction of three similar sized Ag NPs with each other.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(ω)=Re( n E ω (x)× H ω (x)da ),
C sca (ω)= P(ω) I(ω) ,

Metrics