Abstract

Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
    [CrossRef]
  2. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  3. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
    [CrossRef] [PubMed]
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
    [CrossRef] [PubMed]
  5. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol.10, 432–438 (1992).
    [CrossRef]
  6. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
    [CrossRef]
  7. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
    [CrossRef] [PubMed]
  8. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber fabry–perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett.37, 1949–1951 (2012).
    [CrossRef] [PubMed]
  9. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12, 2258–2263 (2004).
    [CrossRef] [PubMed]
  10. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
    [CrossRef] [PubMed]
  11. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
    [CrossRef]
  12. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express19, 25143–25150 (2011).
    [CrossRef]
  13. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis, Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany (2007).
  14. S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).
  15. G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
    [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  17. A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997).
  18. J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express20, 13409–13418 (2012).
    [CrossRef] [PubMed]
  19. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt.38, 6845–6848 (1999).
    [CrossRef]
  20. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).
  21. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express15, 13624–13629 (2007).
    [CrossRef] [PubMed]
  22. P. D. Ltd, “FIMMWAVE/FIMMPROP,” http://www.photond.com .

2012 (3)

2011 (2)

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

2008 (1)

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
[CrossRef]

2007 (1)

2006 (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

2004 (3)

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

1999 (1)

1992 (1)

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol.10, 432–438 (1992).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Baade, A.

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
[CrossRef]

Balykin, V.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
[CrossRef]

Becker, M.

Birks, T.

Birks, T. A.

Brambilla, G.

Brückner, S.

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Dimmick, T. E.

Fatemi, F. K.

Finazzi, V.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Hakuta, K.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
[CrossRef] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
[CrossRef]

Hare, J.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Hoffman, J. E.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Kakarantzas, G.

Kawai, Y.

Kien, F. L.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
[CrossRef] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Kordell, P.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

Lefèvre-Seguin, V.

Leon-Saval, S.

Li, Y.

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol.10, 432–438 (1992).
[CrossRef]

Liang, J.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Miyazaki, H. T.

Nakajima, K.

Nayak, K. P.

Orozco, L. A.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Orucevic, F.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Pechkis, J. A.

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
[CrossRef]

Rauschenbeutel, A.

C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber fabry–perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett.37, 1949–1951 (2012).
[CrossRef] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
[CrossRef]

Ravets, S.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Richardson, D.

Rolston, S. L.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Rothhardt, M.

Russell, P. S.

Russell, P. S. J.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Sugimoto, Y.

Tong, L.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
[CrossRef]

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Vienne, G.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Wadsworth, W.

Warken, F.

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis, Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany (2007).

Wong, J. D.

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

Wuttke, C.

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006).
[CrossRef]

J. Lightwave Technol. (1)

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol.10, 432–438 (1992).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008).
[CrossRef]

Opt. Commun. (2)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012).
[CrossRef]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Other (6)

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis, Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany (2007).

S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).

P. D. Ltd, “FIMMWAVE/FIMMPROP,” http://www.photond.com .

Supplementary Material (2)

» Media 1: AVI (962 KB)     
» Media 2: AVI (1072 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) neff indices of several low-order modes in a nanofiber with nclad = 1.5, surrounded by vacuum (nair = 1). Below V ≈ 3.8, two families of modes exist. In this work, we are emphasizing the LP11 family (circled). By symmetry, modes in this family can interfere with the TM02, TE02, HE22 family, which may be excited through non-adiabatic processes. (b) Intensity and polarization profiles of the LP11 family of modes considered in this work.

Fig. 2
Fig. 2

(a) Simplified diagram of the experimental setup. A Gaussian beam passes through a π-phase plate and is coupled into the fiber to be drawn. On the output of the fiber, a photodetector (PD) and camera (CCD) monitor the transmission. Typical beam images are shown. (b) Schematic of tapered nanofiber.

Fig. 3
Fig. 3

Evolution while tapering of the transmission through fibers with a half angle of 2 mrad as a function of the radius of the waist. (a) Fiber with an initial diameter of 80 μm. (b) Fiber with an initial diameter of 50 μm. The spectrograms associated with those transmission curves give a clear picture of the power transfers during the pull. Note the logarithmic scales on the horizontal axis. (c) (1.0 MB) Movie of the evolution of the beam transmitted through the fiber measured on the CCD during a 2 mrad pull of the 50 μm fiber. We record one frame every second, and display them at a 7 frames per second speed. Sections A, B, C, and D are described in the text. The properties of the fibers used are summarized in the table.

Fig. 4
Fig. 4

Amount of light (normalized) exiting the fiber from the core (blue curve) and from the cladding (red curve). The signals are out of phase, confirming the transfer of energy between modes during the tapering. We observed the two simultaneously by using the two reflections from a thick beamsplitter. (a)–(b) (1.1 MB) Media 2 shows the evolution of the beam transmitted through a nanofiber during a portion of a pull, where the power is high enough to observe the cladding light.

Fig. 5
Fig. 5

(a) Transmission through a SM1500 nanofiber for Ω = 4 mrad (green), 2 mrad (blue), 1 mrad (purple), 0.75 mrad (yellow), 0.4 mrad (red). The transmission plots have the fundamental mode subtracted out (typically about 1%) to accurately describe the total transmission of the LP11 modes. The horizontal axis for the 4 mrad pull was renormalized to take into account extra tension in the fiber due to the rapidity of the pull. (b) Simulated (red circles) and experimental (blue lines) final transmissions through the fiber as a function of angle. Decreasing Ω enables us to improve the transmission of the LP11 family up to 97.8%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff = β / k ,
V = 2 π a λ n core 2 n clad 2 .

Metrics