Abstract

Single-shot detection of ultrabroadband mid-infrared spectra was demonstrated by using chirped-pulse upconversion technique with four-wave difference frequency generation in gases. Thanks to the low dispersion of the gas media, the bandwidth of the phase matching condition of the upconversion process becomes very broad and the entire mid-infrared spectrum spanning from 200 to 5500 cm−1 was upconverted by using a 10 ps chirped pulse to visible wavelength radiation, which was detected with a conventional visible dispersive spectrometer. This method was demonstrated by the successful measurement of infrared absorption spectra of organic polymer films.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012).
    [CrossRef]
  2. H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010).
    [CrossRef]
  3. A. Barth, “Infrared spectroscopy of proteins,” Biochem. Biophys. Acta1767, 1073–1101 (2007).
    [CrossRef] [PubMed]
  4. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007).
    [CrossRef] [PubMed]
  5. F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
    [CrossRef]
  6. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010).
    [CrossRef] [PubMed]
  7. M. D. Thomson, V. Blank, and H. G. Roskos, “Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields,” Opt. Express18, 23173–23182 (2010).
    [CrossRef] [PubMed]
  8. P. Lassonde, F. Théberge, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Infrared generation by filamentation in air of a spectrally shaped laser beam,” Opt. Express19, 14093–14098 (2011).
    [CrossRef] [PubMed]
  9. M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37, 1787–1789 (2012).
    [CrossRef] [PubMed]
  10. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable subcycle mid-infrared conical emission from filamentation in gases,” Opt. Express20, 24741–24747 (2012).
    [CrossRef] [PubMed]
  11. T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci.3, 122–138 (2013).
    [CrossRef]
  12. C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37, 2265–2267 (2012).
    [CrossRef] [PubMed]
  13. M. Cho, Two-Dimensional Optical Spectroscopy(CRC Press, Boca Raton, 2009).
    [CrossRef]
  14. E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett.14, 551–553 (1989).
    [CrossRef] [PubMed]
  15. T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett.19, 129–131 (1994).
    [CrossRef] [PubMed]
  16. M. F. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett.30, 1818–1820 (2005).
    [CrossRef] [PubMed]
  17. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett.30, 1228–1230 (2005).
    [CrossRef] [PubMed]
  18. C. R. Baiz and K. J. Kubarych, “Ultrabroadband detection of a mid-IR continuum by chirped-pulse upconversion,” Opt. Lett.36, 187–189 (2011).
    [CrossRef] [PubMed]
  19. J. Zhu, T. Mathes, A. D. Stahl, J. T. M. Kennis, and M. L. Groot, “Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000cm−1region,” Opt. Express20, 10562–10571 (2012).
    [CrossRef] [PubMed]
  20. S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
    [CrossRef]
  21. G. C. Bjorklund, “Effects of focusing on 3rd-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron.11, 287–296 (1975).
    [CrossRef]
  22. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express17, 18738–18744 (2009).
    [CrossRef]
  23. N. J. Harrick, Internal Reflection Spectroscopy(Wiley, New York, 1967).

2013 (1)

T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci.3, 122–138 (2013).
[CrossRef]

2012 (5)

2011 (2)

2010 (4)

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010).
[CrossRef] [PubMed]

M. D. Thomson, V. Blank, and H. G. Roskos, “Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields,” Opt. Express18, 23173–23182 (2010).
[CrossRef] [PubMed]

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010).
[CrossRef]

2009 (1)

2007 (2)

2005 (2)

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
[CrossRef]

1994 (1)

1989 (1)

1975 (1)

G. C. Bjorklund, “Effects of focusing on 3rd-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron.11, 287–296 (1975).
[CrossRef]

Baiz, C. R.

Bakker, H. J.

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010).
[CrossRef]

Barth, A.

A. Barth, “Infrared spectroscopy of proteins,” Biochem. Biophys. Acta1767, 1073–1101 (2007).
[CrossRef] [PubMed]

Belabas, N.

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on 3rd-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron.11, 287–296 (1975).
[CrossRef]

Blank, V.

Bonvalet, A.

Calabrese, C.

Châteauneuf, M.

P. Lassonde, F. Théberge, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Infrared generation by filamentation in air of a spectrally shaped laser beam,” Opt. Express19, 14093–14098 (2011).
[CrossRef] [PubMed]

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Cheng, M.

Cho, M.

M. Cho, Two-Dimensional Optical Spectroscopy(CRC Press, Boca Raton, 2009).
[CrossRef]

DeCamp, M. F.

Dougherty, T. P.

Dubois, J.

P. Lassonde, F. Théberge, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Infrared generation by filamentation in air of a spectrally shaped laser beam,” Opt. Express19, 14093–14098 (2011).
[CrossRef] [PubMed]

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Fuji, T.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
[CrossRef]

Groot, M. L.

Haensch, T. W.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy(Wiley, New York, 1967).

Heilweil, E. J.

Ishii, K.

Joffre, M.

Jonas, D. M.

Kennis, J. T. M.

Khalil, M.

Kieffer, J. C.

Kubarych, K. J.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
[CrossRef]

Lassonde, P.

Lee, K. F.

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
[CrossRef]

Mathes, T.

Mathieu, P.

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Moore, A.

Nomura, Y.

Nuernberger, P.

Payeur, S.

Petersen, P. B.

Picque, N.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012).
[CrossRef]

Reynolds, A.

Roskos, H. G.

Roy, G.

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012).
[CrossRef]

Shen, L.

Shirai, H.

Skinner, J. L.

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010).
[CrossRef]

Stahl, A. D.

Stingel, A. M.

Suzuki, T.

Théberge, F.

P. Lassonde, F. Théberge, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Infrared generation by filamentation in air of a spectrally shaped laser beam,” Opt. Express19, 14093–14098 (2011).
[CrossRef] [PubMed]

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Thomson, M. D.

Tokmakoff, A.

Tsurumachi, N.

Voronin, A. A.

Widgren, H.

Zheltikov, A. M.

Zhu, J.

Appl. Sci. (1)

T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci.3, 122–138 (2013).
[CrossRef]

Biochem. Biophys. Acta (1)

A. Barth, “Infrared spectroscopy of proteins,” Biochem. Biophys. Acta1767, 1073–1101 (2007).
[CrossRef] [PubMed]

Chem. Rev. (1)

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Bjorklund, “Effects of focusing on 3rd-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron.11, 287–296 (1975).
[CrossRef]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (9)

C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37, 2265–2267 (2012).
[CrossRef] [PubMed]

E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett.14, 551–553 (1989).
[CrossRef] [PubMed]

T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett.19, 129–131 (1994).
[CrossRef] [PubMed]

M. F. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett.30, 1818–1820 (2005).
[CrossRef] [PubMed]

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett.30, 1228–1230 (2005).
[CrossRef] [PubMed]

C. R. Baiz and K. J. Kubarych, “Ultrabroadband detection of a mid-IR continuum by chirped-pulse upconversion,” Opt. Lett.36, 187–189 (2011).
[CrossRef] [PubMed]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010).
[CrossRef] [PubMed]

M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37, 1787–1789 (2012).
[CrossRef] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (1)

F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998).
[CrossRef]

Other (2)

M. Cho, Two-Dimensional Optical Spectroscopy(CRC Press, Boca Raton, 2009).
[CrossRef]

N. J. Harrick, Internal Reflection Spectroscopy(Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the chirped-pulse upconversion with FWDFG in xenon gas. BBO: β-BaB2O4 crystal (Type 1, θ = 29°, t = 100 μm), DP: delay plate (calcite crystal, t = 1.7 mm), DWP: dual wave plate (λ at 400 nm, λ/2 at 800 nm), CM1: r = 1 m concave mirror, CM2: r = 0.5 m concave mirror, MH: aluminium-coated mirror with a hole (ϕ = 7 mm), S: sample, OP: off-axis parabola (f = 50 mm), BF: blue filter.

Fig. 2
Fig. 2

A typical upconverted spectrum of the MIR pulse measured with single-shot (upper curve, referring the upper axis as the wavelength) and the retrieved MIR spectrum (lower curve, referring the lower axis as the wavenumber). The MIR pulse passed through ∼1.5 m of air.

Fig. 3
Fig. 3

(a) A typical spectrogram of the upconverted MIR pulses as a function of the delay between the chirped pulse and the MIR pulse. (b) The cross-correlation signal (solid curve) obtained by integrating the spectrogram along the frequency axis and the frequency of the absorption line of carbon dioxide as a function of delay time (open squares). The linear fitting result of the group delay is also shown (dashed curve).

Fig. 4
Fig. 4

The spectra of the MIR pulse passed through (a) polystyrene and (b) polyvinyl alcohol films measured with the chirped pulse upconversion (red curves). The MIR absorption spectrum for each sample measured with a conventional Fourier-transform spectrometer is also shown (green curves).

Metrics