Abstract

Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n λ /4n AR coating consisting of a TiO2 layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, Inc., 1982), Chap. 10.
  2. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells64(4), 393–404 (2000).
    [CrossRef]
  3. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
    [CrossRef]
  4. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  5. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express21(S1Suppl 1), A157–A166 (2013).
    [CrossRef] [PubMed]
  6. M. P. Lumb, W. Yoon, C. G. Bailey, D. Scheiman, J. G. Tischler, and R. J. Walters, “Modeling and analysis of high-performance, multicolored anti-reflection coatings for solar cells,” Opt. Express21(S4), A585–A594 (2013).
    [CrossRef]
  7. E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.
  8. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
    [CrossRef]
  9. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
    [CrossRef]
  10. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
    [CrossRef] [PubMed]
  11. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  12. H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys.35(Part 2, No. 1B), L126–L129 (1996).
    [CrossRef]
  13. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
    [CrossRef]
  14. H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
    [CrossRef]
  15. W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
    [CrossRef]
  16. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010).
    [CrossRef] [PubMed]
  17. http://www.lumerical.com/
  18. I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation,” J. Electron. Mater.29(7), 984–991 (2000).
    [CrossRef]
  19. I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater.29(7), 992–999 (2000).
    [CrossRef]
  20. S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).
  21. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt.33(34), 7875–7882 (1994).
    [CrossRef] [PubMed]
  22. J. Tang, P.-f. Gu, X. Liu, and H. Li, Modern Optical Thin Film Technology (Press of Zhejiang University, 2006), Chap. 3.
  23. B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

2013

2010

2008

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

2007

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

2004

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

2003

2001

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

2000

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells64(4), 393–404 (2000).
[CrossRef]

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation,” J. Electron. Mater.29(7), 984–991 (2000).
[CrossRef]

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater.29(7), 992–999 (2000).
[CrossRef]

1998

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

1997

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

1996

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys.35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

1994

1982

S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

Adams, J.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Aiken, D. J.

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells64(4), 393–404 (2000).
[CrossRef]

Algora, C.

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation,” J. Electron. Mater.29(7), 984–991 (2000).
[CrossRef]

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater.29(7), 992–999 (2000).
[CrossRef]

Bailey, C. G.

Beydaghyan, G.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Birner, A.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Brandhorst, H.

E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.

Bräuer, R.

Brett, M. J.

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.42(22), 4573–4579 (2003).
[CrossRef] [PubMed]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Brown, T.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Bryngdahl, O.

Buzea, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Chen, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Cheng, K.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Chhajed, S.

Cho, J.

Dean, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Gjessing, J.

Gosele, U.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Hutley, M.

S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

Kennedy, S. R.

Kim, D.

Kim, J. K.

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express21(S1Suppl 1), A157–A166 (2013).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Li, A. P.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Li, J.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Liu, W.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Lumb, M. P.

Ma, H.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Ma, Y.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

Marstein, E. S.

Masuda, H.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys.35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

Mont, F. W.

Muller, F.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Nakao, M.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

Nielsch, K.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Nishio, K.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

Oh, S. J.

Pham, H.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

Poxson, D. J.

Rey-Stolle, I.

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater.29(7), 992–999 (2000).
[CrossRef]

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation,” J. Electron. Mater.29(7), 984–991 (2000).
[CrossRef]

Robbie, K.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Sakamoto, Y.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

Sarro, P. M.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

Satoh, M.

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys.35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

Scheiman, D.

Schubert, E. F.

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express21(S1Suppl 1), A157–A166 (2013).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Schubert, M. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Simms, V.

E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Sudbø, A.

Tamamura, T.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

Tark, S. J.

Tischler, J. G.

Walters, R. J.

Wang, E.

E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.

Wang, X.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Wilson, S.

S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Xu, R.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Yan, B.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

Yang, F.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Yasui, K.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

Yoon, W.

Yu, F.

E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.

Zhuang, Y.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

Appl. Opt.

Appl. Phys. Lett.

B. Yan, H. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in situ ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate,” Appl. Phys. Lett.91(5), 053117 (2007).

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

J. Appl. Phys.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

J. Electron. Mater.

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part I: The influence of window layer oxidation,” J. Electron. Mater.29(7), 984–991 (2000).
[CrossRef]

I. Rey-Stolle and C. Algora, “Optimum antireflection coatings for heteroface AlGaAs/GaAs solar cells—Part II: The influence of uncertainties in the parameters of window and antireflection coatings,” J. Electron. Mater.29(7), 992–999 (2000).
[CrossRef]

J. Mod. Opt.

S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

J. Vac. Sci. Technol. A

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), 1267 (2001).
[CrossRef]

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys.35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

Mater. Sci. Semicond. Process.

W. Liu, X. Wang, R. Xu, X. Wang, K. Cheng, H. Ma, F. Yang, and J. Li, “Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask,” Mater. Sci. Semicond. Process.16(1), 160–164 (2013).
[CrossRef]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Opt. Express

Rev. Sci. Instrum.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum.75(4), 1089–1097 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells64(4), 393–404 (2000).
[CrossRef]

Other

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, Inc., 1982), Chap. 10.

E. Wang, F. Yu, V. Simms, and H. Brandhorst, “Optimum design of antireflection coating for silicon solar cells,” in Photovoltaic Specialists Conference, 10 th, (Palo Alto, Calif, 1974), 168–173.

http://www.lumerical.com/

J. Tang, P.-f. Gu, X. Liu, and H. Li, Modern Optical Thin Film Technology (Press of Zhejiang University, 2006), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the simulation model: perspective view (a), top view (b), and side view (c).

Fig. 2
Fig. 2

Schematic diagram of an AAO thin film: perspective view (a), top view (b), and side view (c).

Fig. 3
Fig. 3

Reflectance curves of the AAO thin film above and two dielectric thin films with refractive indices derived from method1 and method2 respectively.

Fig. 4
Fig. 4

Fill factors of pores and effective refractive indices of the AAO thin films with different pore diameters.

Fig. 5
Fig. 5

LAEs of the GaAs solar cells with TiO2 single-layer AR coatings of different thicknesses.

Fig. 6
Fig. 6

Results of AAO-TiO2 λ/4nλ/4n AR coatings. (a) Reflectance curves of the GaAs solar cells with AAO-TiO2 double-layer AR coatings (colored solid lines with symbols, different colors stand for the AAO layers with different pore diameters) compared with a bare one (black solid line) and one with a TiO2 single-layer AR coating (red dash line). (b) LAEs of the GaAs solar cells with AAO-TiO2 double-layer AR coatings compared with one with a TiO2 single-layer AR coating.

Fig. 7
Fig. 7

Results of AAO-TiO2 λ/4nλ/2n AR coatings. (a) Reflectance curves of the GaAs solar cells with AAO-TiO2 double-layer AR coatings (colored solid lines with symbols, different colors stand for the AAO layers with different pore diameters) compared with a bare one (black solid line) and one with a TiO2 single-layer AR coating (red dash line). (b) LAEs of the GaAs solar cells with AAO-TiO2 double-layer AR coatings compared with one with a TiO2 single-layer AR coating.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eff =f n 0 +( 1f ) n 1
LAE= 400nm 860nm λ hc AE(λ) I AM1.5 (λ)dλ 400nm 860nm λ hc I AM1.5 (λ)dλ .
AE(λ)= P abs (λ) P in (λ)
n 2 = n 1 n g / n 0 ,

Metrics