Abstract

We report on the fluid tunable transition from trapping to discrete diffraction in planar polymer waveguide arrays. A novel optofluidic polymer waveguide array platform was engineered to allow a wavelength dependent transition from a localised state where light is trapped in a defect mode to delocalised state where light is spreading through discrete diffraction. The spectral location of this transition can be controlled through a variation of the fluid’s refractive index. The platform is compatible with aqueous solutions, making it an interesting candidate for an integrated refractive index sensor to perform label-free biosensing.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
    [CrossRef] [PubMed]
  2. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011).
    [CrossRef]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007).
    [CrossRef]
  4. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011).
    [CrossRef] [PubMed]
  5. I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
    [CrossRef]
  6. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
    [CrossRef] [PubMed]
  7. S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
    [CrossRef]
  8. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
    [CrossRef] [PubMed]
  9. J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
    [CrossRef]
  10. H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Bräuer, “Tailoring guided modes in waveguide arrays,” Opt. Express11, 3404–3411 (2003).
    [CrossRef] [PubMed]
  11. C. R. Rosberg, F. Bennet, D. N. Neshev, and P. Rasmussen, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15, 12145–12150 (2007).
    [CrossRef] [PubMed]
  12. F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010).
    [CrossRef]
  13. M. Vieweg, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity,” Opt. Lett.37, 2454–2456 (2012).
    [CrossRef] [PubMed]
  14. E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
    [CrossRef]
  15. F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).
  16. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express13, 1808–1815 (2005).
    [CrossRef] [PubMed]
  17. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed (Wiley-IEEE, 2002).
  18. A. Yariv, Optical Electronics in Mordern Communications, 5th ed (Oxford University, 1997).
  19. A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
    [CrossRef]
  20. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
    [CrossRef]
  21. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
    [CrossRef]
  22. W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
    [CrossRef]
  23. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32, 3080 (2007).
    [CrossRef] [PubMed]
  24. S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
    [CrossRef]
  25. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
    [CrossRef] [PubMed]
  26. J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
    [CrossRef]

2012

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
[CrossRef]

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

M. Vieweg, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity,” Opt. Lett.37, 2454–2456 (2012).
[CrossRef] [PubMed]

2011

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011).
[CrossRef] [PubMed]

2010

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010).
[CrossRef]

2009

J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
[CrossRef]

2007

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
[CrossRef] [PubMed]

2005

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express13, 1808–1815 (2005).
[CrossRef] [PubMed]

2003

H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Bräuer, “Tailoring guided modes in waveguide arrays,” Opt. Express11, 3404–3411 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
[CrossRef] [PubMed]

2001

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

2000

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

1997

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

1973

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
[CrossRef]

Amuli, I. A.

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

Assanto, G.

Barrios, C. A.

Belabas, N.

J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
[CrossRef]

Bennet, F.

F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010).
[CrossRef]

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

C. R. Rosberg, F. Bennet, D. N. Neshev, and P. Rasmussen, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15, 12145–12150 (2007).
[CrossRef] [PubMed]

Bennet, F. H.

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

Bräuer, A.

Brynda, E.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Brzdakiewicz, K. A.

Carlson, J.

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

Casquel, R.

Cerullo, G.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Chrimes, A. F.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
[CrossRef] [PubMed]

Crespi, A.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Ctyroky, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

De La Rue, R. M.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

de Ridder, R. M.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007).
[CrossRef]

Dongre, C.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Driessen, A.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007).
[CrossRef]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
[CrossRef]

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011).
[CrossRef] [PubMed]

Farnell, J.

F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010).
[CrossRef]

Fratalocchi, A.

Garanovich, I.

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

Garmire, E.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

Garvin, H.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

Giessen, H.

Gilchrist, K.

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

Gissibl, T.

Grego, S.

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

Griol, A.

Gu, Y.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Gylfason, K. B.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011).
[CrossRef]

Hoekstra, H. J.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Hoekstra, H. J. W. M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Holgado, M.

Homola, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Hopman, W. C.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Hunsperger, R.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed (Wiley-IEEE, 2002).

Kalantar-Zadeh, K.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Karpierz, M. A.

Kartashov, Y. V.

Kayani, A. A.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Khoshmanesh, K.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Kivshar, Y.

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

Krolikowski, W.

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Lambeck, P. V.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
[CrossRef]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
[CrossRef] [PubMed]

H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Bräuer, “Tailoring guided modes in waveguide arrays,” Opt. Express11, 3404–3411 (2003).
[CrossRef] [PubMed]

Levenson, J. A.

J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
[CrossRef]

Longhi, S.

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Michaelis, D.

Minot, C.

J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
[CrossRef]

Mitchell, A.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

Moison, J. M.

J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007).
[CrossRef]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

Nekvindová, P.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Neshev, D.

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

Neshev, D. N.

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

C. R. Rosberg, F. Bennet, D. N. Neshev, and P. Rasmussen, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15, 12145–12150 (2007).
[CrossRef] [PubMed]

Ngamsom, B.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Osellame, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Pertsch, T.

Peschel, U.

Pollnau, M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Pottier, P.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
[CrossRef] [PubMed]

Ramponi, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Rasmussen, P.

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Rosberg, C. R.

Sánchez, B.

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011).
[CrossRef]

Schröfel, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

Sivan, V.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Skalsky, M.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Škvor, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Sohlström, H.

Somekh, S.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

Špirková, J.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

Stoner, B.

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

Streppel, U.

Sukhorukov, A.

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

Torner, L.

Trompeter, H.

van den Vlekkert, H. H.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

van Lith, J.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

Vieweg, M.

Watts, P.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
[CrossRef] [PubMed]

Yariv, A.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

A. Yariv, Optical Electronics in Mordern Communications, 5th ed (Oxford University, 1997).

Yudistira, D.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

Zeller, E.

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Appl. Phys. Lett.

S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011).
[CrossRef]

J. Micromech. Microeng.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997).
[CrossRef]

J. Opt. Soc. Am. A

F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).

Lab Chip

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010).
[CrossRef] [PubMed]

Laser Photon. Rev.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012).
[CrossRef]

Microfluid. Nanofluid.

A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011).
[CrossRef]

Nat. Photonics

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011).
[CrossRef] [PubMed]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003).
[CrossRef] [PubMed]

Opt. Commun.

F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012).
[CrossRef]

Phys. Rev. Lett.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001).
[CrossRef]

S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012).
[CrossRef]

Other

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed (Wiley-IEEE, 2002).

A. Yariv, Optical Electronics in Mordern Communications, 5th ed (Oxford University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operation principle: a) Increase in defect waveguide’s output power due to a change from discrete diffraction to defect trapping upon increase of fluid index, b) drop in defect output power upon a change in wavelength, c) shift of wavelength dependent transition due to change in fluid index.

Fig. 2
Fig. 2

a) Top view schematic of the waveguide array. The blue sections indicate 15 mm long fluid inlets to the waveguide cores. At the 3 mm long endings the cores are covered with a KMPR cladding. b) Cross-section of the shielded defect waveguide in the centre of the array and the array waveguide cores with fluid openings.

Fig. 3
Fig. 3

Results of the fluid index dependent simulations: a) Effective index (neff) and propagation constant of isolated defect (black line), and propagation band of waveguide array at varying fluid index. b) Normalised output power of centre defect waveguide after propagation through array. The triangles illustrate the fluid indices of the Cargille liquids. Insets: Plan view of array as light propagates along for fluid indices of (I) 1.30, (II) 1.33, (III) 1.40.

Fig. 4
Fig. 4

Results of wavelength dependent simulations: a) Effective index (neff) of isolated defect waveguide (black), and propagation band of array covered with Cargille Series AAA 1.37 liquid (nfl = 1.363) at varying wavelength. Inset: Wavelength at which the isolated defect waveguide index intersects the lower band edge for the Cargille fluid indices. b) Normalised output power of defect waveguide for the array covered with Cargille fluids.

Fig. 5
Fig. 5

a) SEM cross-section micrograph of openings to the waveguide array cores and shielded defect in the centre. Rectangles indicate location of SU-8 waveguide cores b) close up of the defect core and c) array core.

Fig. 6
Fig. 6

Measured output power of waveguide array covered with Cargille refractive index liquids, normalised to the laser output spectrum.

Fig. 7
Fig. 7

a) Infrared camera image of output cross-section of waveguide array covered with Cargille Series AAA 1.37 refractive index liquid (nfl = 1.363) at varying wavelengths and b) corresponding BPM simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( i d d z + β 0 ) A n + C ( A n 1 + A n + 1 ) = 0
β U = β 0 + 2 C β L = β 0 2 C
C = ω ε 0 4 E w g l Δ ε E w g 2 d A

Metrics