Abstract

To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm2 using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).
  2. H. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt.38(9), 1459–1466 (1999).
    [CrossRef] [PubMed]
  3. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol.33(1-2), 30–48 (2000).
    [CrossRef]
  4. J. P. Singh and S. N. Thakur, Laser-Induced breakdown Spectroscopy, (Elsevier Science, Oxford, 2007).
  5. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
    [CrossRef]
  6. A. W. Miziolect, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS) - Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).
  7. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
    [CrossRef]
  8. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
    [CrossRef]
  9. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy techinique,” Appl. Spectrosc.51(8), 1102–1105 (1997).
    [CrossRef]
  10. T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel81(13), 1761–1765 (2002).
    [CrossRef]
  11. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
    [CrossRef]
  12. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt.42(30), 6099–6106 (2003).
    [CrossRef] [PubMed]
  13. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express20(2), 1436–1443 (2012).
    [CrossRef] [PubMed]
  14. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express19(11), 10997–11006 (2011).
    [CrossRef] [PubMed]
  15. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
    [CrossRef]
  16. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
    [CrossRef]
  17. Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).
  18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
    [CrossRef]
  19. Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
    [CrossRef]
  20. Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
    [CrossRef]
  21. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
    [CrossRef]
  22. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
    [CrossRef] [PubMed]
  23. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
    [CrossRef]
  24. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
    [CrossRef]
  25. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
    [CrossRef]
  26. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
    [CrossRef]
  27. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
    [CrossRef] [PubMed]
  28. Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012).
    [CrossRef]
  29. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
    [CrossRef]
  30. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).

2013 (1)

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

2012 (3)

2011 (4)

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

2010 (3)

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

2009 (1)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
[CrossRef]

2007 (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
[CrossRef]

2005 (2)

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel81(13), 1761–1765 (2002).
[CrossRef]

2001 (3)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

2000 (4)

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol.33(1-2), 30–48 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration,” Appl. Spectrosc.54(3), 331–340 (2000).
[CrossRef]

1999 (1)

1997 (1)

Angel, S. M.

Arca, G.

Asimellis, G.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

Bai, X. S.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Bassiotis, I.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Boueri, M.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Carter, J. C.

Ciucci, A.

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
[CrossRef]

Colston, B. W.

Corsi, M.

Cremers, D. A.

Cristoforetti, G.

Diamantopoulou, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
[CrossRef]

Ferris, M. J.

Fink, H.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Giannoudakos, A.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Goode, S. R.

Gorbatenko, A. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Guo, L. B.

Hahn, D. W.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol.33(1-2), 30–48 (2000).
[CrossRef]

Hamilton, S.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

He, X. N.

Hidalgo, M.

Hou, Z.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Hou, Z. Y.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012).
[CrossRef]

Hu, W.

Iriarte, D.

Jiang, D.

Knight, A. K.

Kompitsas, M.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Labutin, T. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Laye, F.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Legnaioli, S.

Lei, W. Q.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Li, C. M.

Li, L.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Li, Z.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
[CrossRef]

Liu, J. M.

Lu, Y. F.

Lui, S. L.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012).
[CrossRef]

Lunden, M. M.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol.33(1-2), 30–48 (2000).
[CrossRef]

Ma, Q. L.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Motto-Ros, V.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Navarro-González, R.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

Neuhauser, R. E.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Ni, W.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Niessner, R.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Palleschi, V.

Panne, U.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Park, J. B.

Pearman, W.

Pender, J.

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel81(13), 1761–1765 (2002).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
[CrossRef]

Raga, A. C.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

Rastelli, S.

Roubani-Kalantzopoulou, F.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Salvetti, A.

Scaffidi, J.

Scherbarth, N. L.

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
[CrossRef]

Singh, J. P.

Sobral, H.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
[CrossRef]

Theisen, M.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Tognoni, E.

Villagrán-Muniz, M.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

Wang, Z.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

White, F. P.

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel81(13), 1761–1765 (2002).
[CrossRef]

Wu, T.

Yu, J.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Yuan, T.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Yuan, T. B.

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

Yueh, F. Y.

Zeng, H. P.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Zeng, X. Y.

Zhang, B. Y.

Zhang, H.

Zheng, L. J.

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Zhou, Y. S.

Zorov, N. B.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Aerosol Sci. Technol. (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol.33(1-2), 30–48 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett.77(20), 3158–3160 (2000).
[CrossRef]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

Appl. Spectrosc. (4)

Fuel (1)

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel81(13), 1761–1765 (2002).
[CrossRef]

J. Anal. At. Spectrom. (4)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Z. Y. Hou, Z. Wang, S. L. Lui, Z. Hou, T. B. Yuan, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom.28(107), 107–113 (2013).

J. Appl. Phys. (2)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007).
[CrossRef]

Q. L. Ma, V. Motto-Ros, F. Laye, J. Yu, W. Q. Lei, X. S. Bai, L. J. Zheng, and H. P. Zeng, “Ultraviolet versus infrared: effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas,” J. Appl. Phys.111(5), 053301 (2012).
[CrossRef]

Opt. Express (4)

Spectrochim. Acta, B At. Spectrosc. (4)

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001).
[CrossRef]

Spectrochimica Acta Part B. (2)

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.60(7-8), 1132–1139 (2005).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B.56(6), 671–683 (2001).
[CrossRef]

Other (4)

L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).

A. W. Miziolect, V. Palleschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS) - Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).

L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).

J. P. Singh and S. N. Thakur, Laser-Induced breakdown Spectroscopy, (Elsevier Science, Oxford, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Time-integrated LIBS spectra of Mn, Cr, and V elements from steel target No. 7 with (solid curve) and without (short dashed curve) the presence of a hemispherical cavity (diameter: 5 mm) at a laser fluence of 42.9 J/cm2.

Fig. 3
Fig. 3

Emission intensity of V I 440.85 nm with or without confinement by hemispheric cavities of different diameters at a laser fluence of 42.9 J/cm2.

Fig. 4
Fig. 4

Emission intensity of the V atomic line (V I with 440.85 nm) as a function of time delay, with the hemispherical cavity (diameter: 5 mm) at laser fluences of 37.4, 40.6, 42.9, 44.2 and 46.3 J/cm2, respectively.

Fig. 5
Fig. 5

Calibration curves vs. concentration in steel alloys: (a) V(I) 440.85 nm/Fe(I) 438.35 nm vs. V concentration; (b) Cr(I) 425.43 nm/ Fe(I) 425.08 nm vs. Cr concentration; (c) Mn(I) 476.64 nm/Fe(I) 492.05 nm vs. Mn concentration.

Tables (2)

Tables Icon

Table 1 Composition of V, Cr, Mn, and Fe elements from the Steel Samples

Tables Icon

Table 2 Transition parameters of the Mn, Cr, and V atomic lines

Metrics