Abstract

We demonstrated multi-span transmission using a periodically poled LiNbO3 (PPLN) based phase sensitive amplifier (PSA). An in-line PSA with a carrier recovery and phase locking system is implemented as a repeater amplifier in a recirculating loop. We achieved a PSA gain as high as + 18 dB and a high external gain of + 12 dB for the in-line PSA as a black box. The impairments caused by phase noise resulting from fiber nonlinearity and intensity noise caused by the amplified spontaneous emission (ASE) of an optical amplifier are largely suppressed using the phase and amplitude regeneration capabilities of the PSA. The ultra long-haul transmission of a 28-Gb/s binary phase shift keying (BPSK) signal over 5400 km was achieved with phase and amplitude regeneration.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, “Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems,” IEEE J. Quantum Electron.16(10), 1073–1081 (1980).
    [CrossRef]
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  3. W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
    [CrossRef]
  4. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express14(6), 2085–2094 (2006).
    [CrossRef] [PubMed]
  5. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
    [CrossRef]
  6. R. Slavík, J. Kakande, F. Parmigiani, L. G. Nielsen, R. Phelan, J. Vojtech, P. Petropoulos, and D. J. Richardson, “Field-trial of an all optical PSK regenerator in a 40 Gbit/s, 38 channel DWDM transmission experiment,” In Proceedings of the Optical Fiber Communication Conference (OFC 2011, Los Angeles, USA) PDP paper PDPA7.
  7. T. Umeki, H. Takenouchi, and M. Asobe, “First demonstration of in-line phase sensitive amplifier based on PPLN waveguide,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2012, Amsterdam, Netherlands) paper Tu.3.E.1.
    [CrossRef]
  8. T. Umeki, M. Asobe, H. Takara, T. Kobayashi, H. Kubota, H. Takenouchi, and Y. Miyamoto, “First demonstration of multi-span transmission using phase and amplitude regeneration in PPLN-based PSA,” In Proceedings of the Optical Fiber Communication Conference (OFC 2013, Anaheim, USA) paper OW1I.7.
    [CrossRef]
  9. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  10. T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Express21(10), 12077–12084 (2013).
    [CrossRef] [PubMed]
  11. M. Asobe, T. Umeki, and K. Enbutsu, “Chirp reduction utilizing phase squeezing property in PPLN-based phase sensitive amplifier,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2011, Geneva, Switzerland) paper We.10.P1.32.
    [CrossRef]
  12. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett.16(2), 674–676 (2004).
    [CrossRef]
  13. R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
    [CrossRef]
  14. T. Umeki, H. Takara, Y. Miyamoto, and M. Asobe, “3-dB signal-ASE beat noise reduction of coherent multi-carrier signal utilizing phase sensitive amplification,” Opt. Express20(22), 24727–24734 (2012).
    [CrossRef] [PubMed]
  15. J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2010, Torino, Italy) PDP paper PDP3.3 (2010).
    [CrossRef]
  16. M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide,” In Proceedings of the OptoElectronics Communications Conference (OECC 2013, Kyoto, Japan) PDP paper PD2–3.
  17. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23(13), 1004–1006 (1998).
    [CrossRef] [PubMed]
  18. T. Umeki, O. Tadanagai, and M. Asobe, “QPM wavelength converter using direct-bonded ridge waveguide with integrated MMI multiplexer,” IEEE Photon. Technol. Lett.23(1), 864–866 (2011).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

T. Umeki, O. Tadanagai, and M. Asobe, “QPM wavelength converter using direct-bonded ridge waveguide with integrated MMI multiplexer,” IEEE Photon. Technol. Lett.23(1), 864–866 (2011).
[CrossRef]

2010 (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

2006 (1)

2005 (1)

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett.16(2), 674–676 (2004).
[CrossRef]

1999 (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

1998 (1)

1990 (1)

1980 (1)

Y. Yamamoto, “Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems,” IEEE J. Quantum Electron.16(10), 1073–1081 (1980).
[CrossRef]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Arbore, M. A.

Asobe, M.

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Chou, M. H.

Croussore, K.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Devgan, P.

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Essiambre, R.-J.

Fejer, M. M.

Foschini, G. J.

Goebel, B.

Gordon, J. P.

Grigoryan, V. S.

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Han, Y.

Hauden, J.

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Kim, C.

Kim, I.

Kramer, G.

Kumar, P.

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

Li, G.

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Miyamoto, Y.

Mollenauer, L. F.

O'Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Tadanagai, O.

T. Umeki, O. Tadanagai, and M. Asobe, “QPM wavelength converter using direct-bonded ridge waveguide with integrated MMI multiplexer,” IEEE Photon. Technol. Lett.23(1), 864–866 (2011).
[CrossRef]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Takara, H.

Takenouchi, H.

Tang, R.

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett.16(2), 674–676 (2004).
[CrossRef]

Umeki, T.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Winzer, P. J.

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, “Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems,” IEEE J. Quantum Electron.16(10), 1073–1081 (1980).
[CrossRef]

Electron. Lett. (2)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3-dB noise figure in a high-gain phase-sensitive fiber amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fiber parametric amplifier for fiber-optic communication,” Electron. Lett.41(19), 1072–1074 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Yamamoto, “Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems,” IEEE J. Quantum Electron.16(10), 1073–1081 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett.16(2), 674–676 (2004).
[CrossRef]

T. Umeki, O. Tadanagai, and M. Asobe, “QPM wavelength converter using direct-bonded ridge waveguide with integrated MMI multiplexer,” IEEE Photon. Technol. Lett.23(1), 864–866 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications system,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (6)

R. Slavík, J. Kakande, F. Parmigiani, L. G. Nielsen, R. Phelan, J. Vojtech, P. Petropoulos, and D. J. Richardson, “Field-trial of an all optical PSK regenerator in a 40 Gbit/s, 38 channel DWDM transmission experiment,” In Proceedings of the Optical Fiber Communication Conference (OFC 2011, Los Angeles, USA) PDP paper PDPA7.

T. Umeki, H. Takenouchi, and M. Asobe, “First demonstration of in-line phase sensitive amplifier based on PPLN waveguide,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2012, Amsterdam, Netherlands) paper Tu.3.E.1.
[CrossRef]

T. Umeki, M. Asobe, H. Takara, T. Kobayashi, H. Kubota, H. Takenouchi, and Y. Miyamoto, “First demonstration of multi-span transmission using phase and amplitude regeneration in PPLN-based PSA,” In Proceedings of the Optical Fiber Communication Conference (OFC 2013, Anaheim, USA) paper OW1I.7.
[CrossRef]

M. Asobe, T. Umeki, and K. Enbutsu, “Chirp reduction utilizing phase squeezing property in PPLN-based phase sensitive amplifier,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2011, Geneva, Switzerland) paper We.10.P1.32.
[CrossRef]

J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” In Proceedings of the European Conference and Exhibition on Optical Communication (ECOC 2010, Torino, Italy) PDP paper PDP3.3 (2010).
[CrossRef]

M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide,” In Proceedings of the OptoElectronics Communications Conference (OECC 2013, Kyoto, Japan) PDP paper PD2–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for recirculating loop transmission.

Fig. 2
Fig. 2

Configuration of in-line PSA with carrier recovery and phase locking system.

Fig. 3
Fig. 3

(a) PSA output spectra with in-phase or quadrature-phase BPSK signal. (b) Measured external PSA gain vs. input power to in-line PSA.

Fig. 4
Fig. 4

(a) Results for EDFA configuration for Q-factor vs. transmission distance (bottom axis) and recirculation number (top axis). (b) Constellation diagrams at fiber input power of −5 dBm for 0, 30, 50, 70 iterations, which corresponds to transmission distances of 0, 1260, 2100, and 2940 km, respectively.

Fig. 5
Fig. 5

(a) Results for EDFA-PSA configuration for Q-factor vs. transmission distance (bottom axis) and recirculation number (top axis). (b) Constellation diagrams at fiber input power of + 7 dBm for 0, 70, 100, 130 iterations, which corresponds to transmission distances of 0, 2940, 4200, and 5460 km, respectively.

Fig. 6
Fig. 6

Comparison of the EDFA and PSA links (a) maximum transmission distance vs. fiber input power (b) Q-factor vs. transmission distance.

Metrics