Abstract

In this paper, we propose and experimentally demonstrate a novel N × M wavelength selective switch (WSS) architecture based on the use of an Opto-VLSI processor. Through a two-stage beamsteering process, wavelength channels from any input optical fiber port can be switched into any output optical fiber port. A proof-of-concept 2 × 3 WSS structure is developed, demonstrating flexible wavelength selective switching with an insertion loss around 15 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Patel and Y. Silberberg, “Liquid-crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett.7(5), 514–516 (1995).
    [CrossRef]
  2. G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)
  3. P. J. Pinzón, I. Pérez, C. Vázquez, and J. M. Sánchez Pena, “Reconfigurable 1×2 wavelength selective switch using high birefringence nematic liquid crystals,” Appl. Opt.51(25), 5960–5965 (2012).
    [CrossRef] [PubMed]
  4. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” J. Lightwave Technol.17(5), 904–911 (1999).
    [CrossRef]
  5. S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).
  6. J. C. Tsai, S. T. Y. Huang, D. Hah, and M. C. Wu, “1 x N-2 wavelength-selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system,” J. Lightwave Technol.24(2), 897–903 (2006).
    [CrossRef]
  7. D. M. Marom, D. T. Neilson, D. S. Greywall, C. S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. Lopez, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: theory, design, and implementation,” J. Lightwave Technol.23(4), 1620–1630 (2005).
    [CrossRef]
  8. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
    [CrossRef] [PubMed]
  9. H. Kishikawa, K. Kimiya, N. Goto, and S. I. Yanagiya, “All-optical wavelength-selective switch consisting of asymmetric x-junction couplers and Raman amplifiers for wide wavelength range,” J. Lightwave Technol.28(1), 172–180 (2010).
    [CrossRef]
  10. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
    [CrossRef]
  11. Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
    [CrossRef]
  12. B. Collings, “Physical layer components, architectures and trends for agile photonic layer mesh networking,” in Optical communication,2009. ECOC '09. 35th European Conference on, 2009), 1–3.
  13. N. K. Fontaine, R. Ryf, and D. T. Neilson, “N×M Wavelength Selective Crossconnect with Flexible Passbands,” in OSA Technical digest (Optical Society of America, 2012), PDP5B.2.
  14. C. Paul, “M*N wavelength selective optical switch,” US 8045854 B2 (Oct. 25 2011).
  15. A. Rohit, R. Stabile, and K. A. Williams, “8×8 Space and Wavelength Selective Cross-connect for Simultaneous Dynamic Multi-wavelength Routing,” in OSA Technical digest (online) (Optical Society of America, 2013), OW1C.4.
  16. F. Xiao, K. Alameh, and Y. T. Lee, “Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers,” Opt. Express17(25), 23123–23129 (2009).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (1)

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

2010 (1)

2009 (1)

2007 (1)

Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

1999 (1)

1995 (1)

J. S. Patel and Y. Silberberg, “Liquid-crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett.7(5), 514–516 (1995).
[CrossRef]

Abakoumov, D.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Aksyuk, V. A.

Alameh, K.

Arakawa, T.

Bartos, A.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Basavanhally, N. R.

Baxter, G. F. S.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Bishop, D. J.

Bolle, C. A.

Clarke, I.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Ford, J. E.

Goebuchi, Y.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
[CrossRef]

Goto, N.

Goto, T.

Greywall, D. S.

Hah, D.

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Huang, S. T. Y.

Ikehara, H.

Kamiya, H.

Kato, T.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
[CrossRef]

Kimiya, K.

Kishikawa, H.

Kokubun, Y.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013).
[CrossRef] [PubMed]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
[CrossRef]

Kolodner, P.

Lee, Y. T.

Li, S. H.

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

Lopez, D. O.

Low, Y.

Marom, D. M.

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Neilson, D. T.

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Pai, C. S.

Pardo, F.

Patel, J. S.

J. S. Patel and Y. Silberberg, “Liquid-crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett.7(5), 514–516 (1995).
[CrossRef]

Pérez, I.

Pinzón, P. J.

Poole, S.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Sánchez Pena, J. M.

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Silberberg, Y.

J. S. Patel and Y. Silberberg, “Liquid-crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett.7(5), 514–516 (1995).
[CrossRef]

Simon, M. E.

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Tsai, J. C.

Vázquez, C.

Walker, J. A.

Wan, Z. J.

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

Wu, M. C.

Wu, Y. M.

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

Xiao, F.

Xu, J.

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

Yanagiya, S. I.

Zhong, S. L.

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

Zhou, H.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

J. S. Patel and Y. Silberberg, “Liquid-crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett.7(5), 514–516 (1995).
[CrossRef]

S. H. Li, Z. J. Wan, J. Xu, S. L. Zhong, and Y. M. Wu, “Wavelength-selective switch based on a polarization-independent transmission grating and a high fill-factor micromirror array,” IEEE Photon. Technol. Lett.23, 1249–1251 (2011).

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1 x N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Y. Goebuchi, T. Kato, and Y. Kokubun, “Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators,” IEEE Photon. Technol. Lett.19(9), 671–673 (2007).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Other (5)

B. Collings, “Physical layer components, architectures and trends for agile photonic layer mesh networking,” in Optical communication,2009. ECOC '09. 35th European Conference on, 2009), 1–3.

N. K. Fontaine, R. Ryf, and D. T. Neilson, “N×M Wavelength Selective Crossconnect with Flexible Passbands,” in OSA Technical digest (Optical Society of America, 2012), PDP5B.2.

C. Paul, “M*N wavelength selective optical switch,” US 8045854 B2 (Oct. 25 2011).

A. Rohit, R. Stabile, and K. A. Williams, “8×8 Space and Wavelength Selective Cross-connect for Simultaneous Dynamic Multi-wavelength Routing,” in OSA Technical digest (online) (Optical Society of America, 2013), OW1C.4.

G. F. S. Baxter, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Proc. OFC/NFOEC, (OSA, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed N × M WSS architecture.

Fig. 2
Fig. 2

Experimental setup to demonstrate the principle of the proposed N × M WSS architecture.

Fig. 3
Fig. 3

(a) Measured wavelength selective switch output power for switching from input Port 4 to output Ports 6, 7 and 8; (b) schematics of the corresponding beamsteering phase holograms uploaded onto the sub-pixel-blocks; (c) overall spectral transmission from input Port 4 to the output Port 6, 7 and 8.

Fig. 4
Fig. 4

(a) Measured wavelength selective switch output power for switching from input Port 4 to output Ports 6, 7 and 8; (b) schematics of the corresponding beamsteering phase holograms; (c) overall spectral transmission from input Port 5 to the output Port 6, 7 and 8.

Fig. 5
Fig. 5

(a) Measured wavelength selective switch output power for simultaneously switching wavelength channels from input Port 4 and Port 5 to output Ports 6, 7 and 8; (b) schematics of the corresponding beamsteering phase holograms.

Fig. 6
Fig. 6

(a) Measured wavelength selective switch output power for simultaneously switching wavelength channels from Port 4 and Port 5 to Port 7 when the spectral width is about 0.84 nm (16 pixels); (b) schematics of the corresponding beamsteering phase holograms.

Metrics