Abstract

This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry

Jie Huang, Xinwei Lan, Ming Luo, and Hai Xiao
Opt. Express 22(15) 18757-18769 (2014)

Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis

Rui Cheng, Li Xia, Chaotan Sima, Yanli Ran, Jalal Rohollahnejad, Jiaao Zhou, Yongqiang Wen, and Can Yu
Opt. Express 24(3) 2466-2484 (2016)

Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing

Liwei Hua, Yang Song, Jie Huang, Xinwei Lan, Yanjun Li, and Hai Xiao
Appl. Opt. 54(24) 7181-7187 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. LeBlanc, S. Y. Huang, M. Ohn, R. M. Measures, A. Guemes, and A. Othonos, “Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis,” Opt. Lett. 21(17), 1405–1407 (1996).
    [Crossref] [PubMed]
  2. W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
    [Crossref]
  3. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [Crossref] [PubMed]
  4. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  5. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  6. R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
    [Crossref]
  7. T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
    [Crossref] [PubMed]
  8. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref] [PubMed]
  9. X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20(11), 12076–12084 (2012).
    [Crossref] [PubMed]

2012 (3)

2011 (1)

2010 (1)

2008 (1)

1996 (1)

1994 (1)

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Bao, X.

Chen, L.

Dong, B.

Dong, Y.

Duan, D.-W.

T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
[Crossref] [PubMed]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Gilgen, H.

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

Gisin, N.

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

Gong, J.

Guemes, A.

Han, M.

Huang, S. Y.

Lally, E.

LeBlanc, M.

Li, X.

Liang, R.

Liu, D.

Liu, M.

T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
[Crossref] [PubMed]

Measures, R. M.

Ohn, M.

Othonos, A.

Passy, R.

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

Shillig, T. J.

Shum, P. P.

Sun, Q.

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

von der Weid, J.-P.

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

Wang, A.

Wang, D. Y.

Wang, J.

Wang, W.

Wo, J.

Wu, D.

T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, Z.

Zhu, T.

T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

J. Lightwave Technol. (2)

R. Passy, N. Gisin, J.-P. von der Weid, and H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[Crossref]

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Sensors (Basel) (1)

T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(12), 10430–10449 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the microwave assisted multiplexing of fiber optic interferometric sensors. PD: photo-detector

Fig. 2
Fig. 2

Schematic of the system configuration and implementation for concept demonstration. RF-AMP: radio frequency-amplifier, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, PD: photo-detector, EFPI: extrinsic Fabry-Perot interferometer, P1/P2: Port 1/Port 2

Fig. 3
Fig. 3

(a) Time domain signal after applying a complex inverse Fourier transform to the microwave spectrum with the center wavelength of the tunable filter set to be 1552 nm, (b), (c) and (d) Normalized microwave-reconstructed optical interferograms of the three EFPIs in comparison with their spectra measured individually using an OSA, respectively.

Fig. 4
Fig. 4

(a) Distributed strain measurement using three multiplexed EFPI sensors, where strain is applied on EFPI #2 only, (b) Interferogram shift of the EFPI #2 as a function of applied axial strain. Inset: Interferograms of EFPI #2 at various applied strains.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 [ 1+Mcos( ωt ) ]
Γ j = I 0 [ 1+Mcos( ω(t+ τ j ) ) ] R j
R j ( λ m )= R j1 + R j2 +2 R j1 R j2 cos( 2π λ m OP D j + ϕ j )
τ j = 2 D j v
Y= j=1 N Γ j = j=1 N I 0 R j [ 1+Mcos( ω(t+ τ j ) ) ]
y j =AM I 0 R j at t= τ j and j=1,2,...N
Δ D min = 1 2 B RF v

Metrics