Abstract

Temperature dependence of thermal effect for neodymium doped yttrium orthovanadate crystal is quantified by measuring its dioptric power. With the boundary temperature range from 293 K to 353 K, the increase of fractional thermal load (lasing at 1064 nm, pumping at 888 nm) is from 16.9% to 24.9% with lasing, which is attributed to the rise of upconversion parameter and thermal conductivity. The influence of the boundary temperature on the output characteristic of a high-power single frequency laser is also investigated. The maximum output power decreases from 25.3 W to 13.5 W with the increase of boundary temperature from 293 K to 353 K. Analysis results indicate that further power scaling can be achieved by controlling the Nd:YVO4 temperature to a lower.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
    [CrossRef]
  2. W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
    [CrossRef]
  3. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  4. S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
    [CrossRef]
  5. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
    [CrossRef]
  6. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
    [CrossRef]
  7. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt.38(12), 2714–2723 (2002).
    [CrossRef]
  8. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
    [CrossRef]
  9. A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
    [CrossRef]
  10. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
    [CrossRef]
  11. X. Delen, F. Balembois, O. Musset, and P. Georges, “Characteristics of laser operation at 1064 nm in Nd:YVO4under diode pumping at 808 and 914 nm,” J. Opt. Soc. Am. B28(1), 52–57 (2011).
    [CrossRef]
  12. L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
    [CrossRef]
  13. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
    [CrossRef]
  14. T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
    [CrossRef]
  15. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
    [CrossRef] [PubMed]
  16. I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.
  17. X. Delen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B28(5), 972–976 (2011).
    [CrossRef]
  18. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd:YVO4crystals,” J. Opt. Soc. Am. B26(11), 2084–2088 (2009).
    [CrossRef]
  19. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-μ m stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt.41(33), 7052–7057 (2002).
    [CrossRef] [PubMed]
  20. R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
    [CrossRef]
  21. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
    [CrossRef]
  22. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
    [CrossRef]
  23. J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
    [CrossRef]
  24. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
    [CrossRef] [PubMed]
  25. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
    [CrossRef]
  26. J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
    [CrossRef]
  27. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
    [CrossRef]
  28. Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
    [CrossRef]
  29. Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
    [CrossRef]
  30. M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
    [CrossRef]
  31. S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
    [CrossRef]
  32. D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
    [CrossRef]
  33. W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
    [CrossRef]
  34. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt.5(10), 1550–1566 (1966).
    [CrossRef] [PubMed]
  35. Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
    [CrossRef]

2012 (1)

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

2011 (3)

2010 (3)

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (1)

2007 (1)

2006 (1)

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

2005 (2)

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

2002 (6)

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt.38(12), 2714–2723 (2002).
[CrossRef]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-μ m stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt.41(33), 7052–7057 (2002).
[CrossRef] [PubMed]

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

2001 (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

2000 (3)

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

1999 (2)

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

1998 (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

1997 (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

1996 (1)

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

1966 (1)

1964 (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Balembois, F.

Bartschke, J.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Bass, M.

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Bausa, L. E.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Bermudez, J. C.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Bettinelli, M.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Biswal, S.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Bowman, S. R.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Camargo, A.

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Catunda, T.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Cavalli, E.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Chen, Y. F.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Chuang, T.

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Condon, N. J.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Cornacchia, F.

Currin, K. M.

Damzen, M. J.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Dekker, P.

Delen, X.

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

George, J.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Georges, P.

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Howard, A.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Jabczynski, J. K.

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Jaque, D.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Jenssen, H. P.

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Kapoor, R.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Kiryanov, A. V.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Koechner, W.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
[CrossRef]

Kogelnik, H.

Lahoz, F.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Lee, J. J.

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Lhuillier, J. A.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Li, F. Q.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Li, T.

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Martin, I. R.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Meilhac, L.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Messias, D. N.

Mukhopadhyay, P. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Musgrave, I. O.

I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.

Musset, O.

Myers, J. D.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Myers, M. J.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Northridge, J. M.

Nunes, L.

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Oconnor, S. P.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Omatsu, T.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Pask, H.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Pask, H. M.

Pauliat, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Peng, K. C.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Perlov, D.

Pinto-Robledo, V. J.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Piper, J. A.

Pollnau, M.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Ramirez, M. O.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Rapaport, A.

Roosen, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Rosenberg, A.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Sardar, D. K.

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Schawlow, A. L.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Scott, W. C.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Seka, W.

Sharma, S. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Sole, J. G.

Speghini, A.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Spence, D. J.

Tanner, P. A.

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Tonelli, M.

Turri, G.

Verdun, H. R.

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Wang, Y. J.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Xia, S. D.

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Xiao, G.

Xie, C. D.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Yen, W. M.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Yow, R. M.

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Zelmon, D. E.

Zhang, K. S.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Zhao, S.

Zheng, Y. H.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (4)

Appl. Phys. B (4)

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (6)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D: Appl. Phys. (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

Opt. Commun (1)

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Opt. Commun. (3)

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Opt. Express (3)

Opt. Mater. (1)

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Phys. Rev. (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Phys. Rev. B (1)

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Pramana-J. Phys. (1)

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Other (2)

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
[CrossRef]

I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dioptric power versus absorbed pump power at 7 different boundary temperatures ranging from 293 K to 353 K. Dots are measuring results of the dioptric power and the lines are the theoretical fitting.

Fig. 2
Fig. 2

Upconversion factor γ and fractional thermal load ηh versus boundary temperature of the Nd:YVO4 crystal.

Fig. 3
Fig. 3

Experimental setup of the single-frequency green laser. TGG: terbium gallium garnet; HWP: half wave plate; LBO: lithium triborate.

Fig. 4
Fig. 4

Beam radius of fundamental wave in Nd:YVO4 as a function of thermal focal length of the Nd:YVO4 crystal.

Fig. 5
Fig. 5

Laser output power vs absorption pump power at 7 different boundary temperatures ranging from 293 K to 353 K.

Fig. 6
Fig. 6

The dependence of the maximum output power and optical-optical conversion efficiency upon the boundary temperature of the Nd:YVO4 crystal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D = η h P a b s π K ω p 2 d s d T .
K ( T ) = K 0 T 0 T
d n ( T ) d T = A B ( T 296 )
η h = η q + λ p R λ l ( Δ n τ n r + γ Δ n 2 ) .
D = C K 1 η h P a b s .
D = C K 1 η q P a b s + C K 1 h ν l V ( Δ n τ n r + γ Δ n 2 ) .

Metrics