Abstract

Temperature dependence of thermal effect for neodymium doped yttrium orthovanadate crystal is quantified by measuring its dioptric power. With the boundary temperature range from 293 K to 353 K, the increase of fractional thermal load (lasing at 1064 nm, pumping at 888 nm) is from 16.9% to 24.9% with lasing, which is attributed to the rise of upconversion parameter and thermal conductivity. The influence of the boundary temperature on the output characteristic of a high-power single frequency laser is also investigated. The maximum output power decreases from 25.3 W to 13.5 W with the increase of boundary temperature from 293 K to 353 K. Analysis results indicate that further power scaling can be achieved by controlling the Nd:YVO4 temperature to a lower.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
    [CrossRef]
  2. W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
    [CrossRef]
  3. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  4. S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
    [CrossRef]
  5. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
    [CrossRef]
  6. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
    [CrossRef]
  7. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt.38(12), 2714–2723 (2002).
    [CrossRef]
  8. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
    [CrossRef]
  9. A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
    [CrossRef]
  10. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
    [CrossRef]
  11. X. Delen, F. Balembois, O. Musset, and P. Georges, “Characteristics of laser operation at 1064 nm in Nd:YVO4under diode pumping at 808 and 914 nm,” J. Opt. Soc. Am. B28(1), 52–57 (2011).
    [CrossRef]
  12. L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
    [CrossRef]
  13. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
    [CrossRef]
  14. T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
    [CrossRef]
  15. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
    [CrossRef] [PubMed]
  16. I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.
  17. X. Delen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B28(5), 972–976 (2011).
    [CrossRef]
  18. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd:YVO4crystals,” J. Opt. Soc. Am. B26(11), 2084–2088 (2009).
    [CrossRef]
  19. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-μ m stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt.41(33), 7052–7057 (2002).
    [CrossRef] [PubMed]
  20. R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
    [CrossRef]
  21. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
    [CrossRef]
  22. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
    [CrossRef]
  23. J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
    [CrossRef]
  24. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
    [CrossRef] [PubMed]
  25. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
    [CrossRef]
  26. J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
    [CrossRef]
  27. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
    [CrossRef]
  28. Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
    [CrossRef]
  29. Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
    [CrossRef]
  30. M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
    [CrossRef]
  31. S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
    [CrossRef]
  32. D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
    [CrossRef]
  33. W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
    [CrossRef]
  34. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt.5(10), 1550–1566 (1966).
    [CrossRef] [PubMed]
  35. Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
    [CrossRef]

2012 (1)

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

2011 (3)

2010 (3)

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
[CrossRef] [PubMed]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (1)

2006 (1)

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

2005 (2)

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

2002 (6)

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt.38(12), 2714–2723 (2002).
[CrossRef]

A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-μ m stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt.41(33), 7052–7057 (2002).
[CrossRef] [PubMed]

2001 (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

2000 (3)

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

1999 (2)

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

1998 (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

1997 (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

1996 (1)

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

1966 (1)

1964 (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Balembois, F.

Bartschke, J.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Bass, M.

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Bausa, L. E.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Bermudez, J. C.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Bettinelli, M.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Biswal, S.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Bowman, S. R.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Camargo, A.

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Catunda, T.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Cavalli, E.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Chen, Y. F.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Chuang, T.

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Condon, N. J.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Cornacchia, F.

Currin, K. M.

Damzen, M. J.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Dekker, P.

Delen, X.

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

George, J.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Georges, P.

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Howard, A.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Jabczynski, J. K.

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009).
[CrossRef]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Jaque, D.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008).
[CrossRef] [PubMed]

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Jenssen, H. P.

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Kapoor, R.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Kiryanov, A. V.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Koechner, W.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
[CrossRef]

Kogelnik, H.

Lahoz, F.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Lee, J. J.

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Lhuillier, J. A.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Li, F. Q.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Li, T.

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Martin, I. R.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Meilhac, L.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Messias, D. N.

Mukhopadhyay, P. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Musgrave, I. O.

I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.

Musset, O.

Myers, J. D.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Myers, M. J.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Northridge, J. M.

Nunes, L.

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Oconnor, S. P.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005).
[CrossRef]

Omatsu, T.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Pask, H.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Pask, H. M.

Pauliat, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Peng, K. C.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Perlov, D.

Pinto-Robledo, V. J.

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Piper, J. A.

Pollnau, M.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

Ramirez, M. O.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Rapaport, A.

Roosen, G.

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Rosenberg, A.

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Sardar, D. K.

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Schawlow, A. L.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Scott, W. C.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Seka, W.

Sharma, S. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Sole, J. G.

Speghini, A.

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

Spence, D. J.

Tanner, P. A.

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

Tonelli, M.

Turri, G.

Verdun, H. R.

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

Wang, Y. J.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Xia, S. D.

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Xiao, G.

Xie, C. D.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Yen, W. M.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Yow, R. M.

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

Zelmon, D. E.

Zhang, K. S.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Zhao, S.

Zheng, Y. H.

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (4)

Appl. Phys. B (4)

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009).
[CrossRef]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002).
[CrossRef]

A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999).
[CrossRef]

T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997).
[CrossRef]

S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011).
[CrossRef]

Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D: Appl. Phys. (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001).
[CrossRef]

Opt. Commun (1)

L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002).
[CrossRef]

Opt. Commun. (3)

J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000).
[CrossRef]

J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002).
[CrossRef]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010).
[CrossRef]

Opt. Express (3)

Opt. Mater. (1)

D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

Phys. Rev. (1)

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Phys. Rev. B (1)

S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002).
[CrossRef]

Pramana-J. Phys. (1)

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999).
[CrossRef]

Other (2)

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407.
[CrossRef]

I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dioptric power versus absorbed pump power at 7 different boundary temperatures ranging from 293 K to 353 K. Dots are measuring results of the dioptric power and the lines are the theoretical fitting.

Fig. 2
Fig. 2

Upconversion factor γ and fractional thermal load ηh versus boundary temperature of the Nd:YVO4 crystal.

Fig. 3
Fig. 3

Experimental setup of the single-frequency green laser. TGG: terbium gallium garnet; HWP: half wave plate; LBO: lithium triborate.

Fig. 4
Fig. 4

Beam radius of fundamental wave in Nd:YVO4 as a function of thermal focal length of the Nd:YVO4 crystal.

Fig. 5
Fig. 5

Laser output power vs absorption pump power at 7 different boundary temperatures ranging from 293 K to 353 K.

Fig. 6
Fig. 6

The dependence of the maximum output power and optical-optical conversion efficiency upon the boundary temperature of the Nd:YVO4 crystal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D = η h P a b s π K ω p 2 d s d T .
K ( T ) = K 0 T 0 T
d n ( T ) d T = A B ( T 296 )
η h = η q + λ p R λ l ( Δ n τ n r + γ Δ n 2 ) .
D = C K 1 η h P a b s .
D = C K 1 η q P a b s + C K 1 h ν l V ( Δ n τ n r + γ Δ n 2 ) .

Metrics