Abstract

The optical absorption properties of a-Si:H have acquired much attention in solar cell(SC) research. In this paper, we studied enhancement of light absorption in the a-Si:H(10%H) SCs with thicknesses from 31.25nm to 2μm and with nano textures of the column-shaped nanohole (CLNH) array and of the cone-shaped nanohole (CNNH) array, via the Finite Difference Time Domain (FDTD) simulation. For a given type of nano texture and film thickness, d, the ultimate efficiency, the ideal efficiency without considering carrier combinations, is optimized over array period, p, and filling fraction, f, and is defined as the optimized ultimate efficiency, η0. The simulation results demonstrated that: even for the CLNH textured a-Si:H(10%H) SCs as thin as 62.5 nm,η0 is 19.7%. When the a-Si:H(10%H) SC is thinner than a critical depth of about 250nm, the CLNH texture is more efficient than the CNNH texture, and vice versa. When the thicknesses of SCs are very thin, especially smaller than 100nm, the efficiencies of the a-Si:H(10%H) SCs are evidently higher than those of the c-Si SCs. For example, in the CLNH arrays, when d = 62.5nm, η0for the a-Si:H(10%H) SCs is higher than the c-Si SCs by a factor of approximate 2.3.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010).
    [CrossRef] [PubMed]
  2. W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
    [CrossRef]
  3. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  4. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  5. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  6. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
    [CrossRef] [PubMed]
  7. G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
    [CrossRef] [PubMed]
  8. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  9. S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
    [CrossRef] [PubMed]
  10. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  11. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett.36(9), 1713–1715 (2011).
    [CrossRef] [PubMed]
  12. S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
    [CrossRef]
  13. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett.34(23), 3725–3727 (2009).
    [CrossRef] [PubMed]
  14. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
    [CrossRef] [PubMed]
  15. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  16. O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett.32(19), 2789–2791 (2007).
    [CrossRef] [PubMed]
  17. T.-H. Chang, P.-H. Wu, S.-H. Chen, C.-H. Chan, C.-C. Lee, C.-C. Chen, and Y.-K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express17(8), 6519–6524 (2009).
    [CrossRef] [PubMed]
  18. G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express18(4), 3746–3753 (2010).
    [CrossRef] [PubMed]
  19. M. Di Vece, Y. Kuang, S. N. van Duren, J. M. Charry, L. van Dijk, and R. E. I. Schropp, “Plasmonic nano-antenna a-Si:H solar cell,” Opt. Express20(25), 27327–27336 (2012).
    [CrossRef] [PubMed]
  20. W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
    [CrossRef]
  21. H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
    [CrossRef]
  22. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
    [CrossRef]
  23. J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  24. N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express20(S5Suppl 5), A694–A705 (2012).
    [CrossRef] [PubMed]
  25. W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).
  26. Air Mass 1.5 Direct+Circumsolar spectrum, American Society for Testing and Materials,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  27. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013).
    [CrossRef]
  28. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  29. F. Qin, Z.-M. Meng, X.-L. Zhong, Y. L. Liu, and Z. Y. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique,” Opt. Express20(12), 13091–13099 (2012).
    [CrossRef] [PubMed]
  30. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express21(S2Suppl 2), A295–A304 (2013).
    [CrossRef] [PubMed]

2013 (7)

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
[CrossRef]

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013).
[CrossRef]

A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express21(S2Suppl 2), A295–A304 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (3)

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett.36(9), 1713–1715 (2011).
[CrossRef] [PubMed]

S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
[CrossRef]

J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

2010 (6)

G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express18(4), 3746–3753 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

2009 (4)

2007 (2)

1999 (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

1991 (1)

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

1961 (1)

W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Akagawa, M.

S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
[CrossRef]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013).
[CrossRef]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Bai, W.

Balberg, I.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

Bartoli, F.

Benick, J.

Bläsi, B.

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, L.

Carapella, J.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

Chan, C.-H.

Chang, F.

Chang, T.-H.

Charry, J. M.

Chen, C.-C.

Chen, G.

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, S.-H.

Ching, K.-L.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Connor, S. T.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Crandall, R. S.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Demir, H. V.

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Di Vece, M.

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Du, Q. G.

Eisenberg, N.

Eisenlohr, J.

Fahim, N. F.

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fan, S. H.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fan, Z.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Feuermann, D.

Fujiwara, H.

S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
[CrossRef]

Furukawa, N.

W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
[CrossRef]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Gan, Q.

Gong, X. G.

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Gordon, J. M.

Gu, L.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Gu, M.

Guttowski, A.

Han, S. E.

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Hauser, H.

Hsu, C. M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, B.

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Huang, Y.

Huffaker, D. L.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Hung, C.-H.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

Jia, B.

Kageyama, S.

S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
[CrossRef]

Kam, C. H.

Kan, E.

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Katz, E. A.

Keppner, H.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Korech, O.

Koshibae, W.

W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
[CrossRef]

Kuang, Y.

Kwon, K.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Lal, A.

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Lee, C.-C.

Leung, S.-F.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Li, Z. Y.

Lin, C.

Lin, Q.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Liu, Y. L.

Lu, Y.

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Luque, A.

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Mahan, A. H.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

Mariani, G.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

Martí, A.

McGehee, M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Mellor, A.

Meng, Z.-M.

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nagaosa, N.

W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
[CrossRef]

Nelson, B. P.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

Peters, M.

Povinelli, M. L.

Qin, F.

Qin, G. G.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

Queisser, H. J. J.

W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Schropp, R. E. I.

Scofield, A. C.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

Shah, A.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Shi, Z.

Shockley, W.

W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Song, G.

Soref, R. A.

Su, Y.-K.

Sun, G.

Sun, X. W.

Tobías, I.

Torres, P.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Tscharner, R.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

van Dijk, L.

van Duren, S. N.

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wang, Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, W.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

Wei, S.-H.

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Wellens, C.

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wu, P.-H.

Wyrsch, N.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Xiang, H. J.

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Xie, Z.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013).
[CrossRef]

Xu, Y. Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yu, H. Y.

Yu, K.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Yu, M.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Yu, Z. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zhang, J.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett.34(23), 3725–3727 (2009).
[CrossRef] [PubMed]

Zhang, Y.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

Zhong, X.-L.

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Appl. Phys. (Berl.) (1)

W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).

J. Appl. Phys. (1)

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991).
[CrossRef]

J. Phys. D Appl. Phys. (1)

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013).
[CrossRef]

Nano Lett. (7)

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Nat Commun (1)

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013).
[CrossRef] [PubMed]

Opt. Express (9)

T.-H. Chang, P.-H. Wu, S.-H. Chen, C.-H. Chan, C.-C. Lee, C.-C. Chen, and Y.-K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express17(8), 6519–6524 (2009).
[CrossRef] [PubMed]

G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express18(4), 3746–3753 (2010).
[CrossRef] [PubMed]

M. Di Vece, Y. Kuang, S. N. van Duren, J. M. Charry, L. van Dijk, and R. E. I. Schropp, “Plasmonic nano-antenna a-Si:H solar cell,” Opt. Express20(25), 27327–27336 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express20(S5Suppl 5), A694–A705 (2012).
[CrossRef] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

F. Qin, Z.-M. Meng, X.-L. Zhong, Y. L. Liu, and Z. Y. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique,” Opt. Express20(12), 13091–13099 (2012).
[CrossRef] [PubMed]

A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express21(S2Suppl 2), A295–A304 (2013).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013).
[CrossRef]

S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Science (2)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999).
[CrossRef] [PubMed]

Other (1)

Air Mass 1.5 Direct+Circumsolar spectrum, American Society for Testing and Materials,” http://rredc.nrel.gov/solar/spectra/am1.5/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the two nanohole textured arrays and their f factors. The dark part represents a-Si or c-Si, and the light part represents the nano hole. (a) CLNH arrays; (b) CNNH arrays; (c) one period of the CLNH arrays and the crosssection figures with the area of the nano holes arriving maxima, for three different f ; (d) one period of the CNNH arrays and the crosssection figures with the area of the nano holes arriving maxima, for three different f.

Fig. 2
Fig. 2

Ultimate efficiencies η in CLNH a-Si:H(10%H) SCs at different layer depth d, filling factor f and period p.

Fig. 3
Fig. 3

Ultimate efficiencies η in CNNH a-Si:H(10%H) SCs at different layer depth d, filling factor f and period p.

Fig. 4
Fig. 4

Optimized ultimate efficiency η0 for CLNH and CNNH nano textured a-Si:H(10%H) and c-Si SCs, with the a-Si:H(10%H) and c-Si bare, non-textured substrate SCs as comparison.

Fig. 5
Fig. 5

Optimized ultimate efficiency η0 of CLNH nano textured and bare, non-textured substrate a-Si:H SCs, with CH of 8%,10%, and 12%.

Fig. 6
Fig. 6

Optimized ultimate efficiency η0 of CNNH nano textured and bare, non-textured substrate a-Si:H SCs, with CH of 8%, 10%, and 12%.

Fig. 7
Fig. 7

The relationships between R(λ), T(λ) and A(λ), and the incident wavelength λ, in the optimized a-Si:H(10%H) SCs. (a) d = 2 μm, CLNH textured, η0 is optimized when f = 1-0.6, p = 500 nm; (b) d = 2 μm, CNNH textured, η0 is optimized when f = 1 - π/12, p = 600nm; (c) d = 62.5nm, CLNH textured,η0 is optimized when f = 1 - 0.3, p = 400 nm; (d) d = 62.5nm, CNNH textured, η0 is optimized when f = 1 - π/12, p = 400nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η= 0 λg I(λ)A(λ) λ λg dλ 0 I(λ)dλ

Metrics