Abstract

A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10−9cm−1Hz-1/2, which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C2H2 transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
    [CrossRef]
  2. S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
    [CrossRef]
  3. P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
    [CrossRef]
  4. R. Provencal, M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O’Keefe, and J. R. Podolske, “Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements,” Appl. Opt.44(31), 6712–6717 (2005).
    [CrossRef] [PubMed]
  5. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
    [CrossRef]
  6. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt.19(1), 144–147 (1980).
    [CrossRef] [PubMed]
  7. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt.23(8), 1238–1238 (1984).
    [CrossRef] [PubMed]
  8. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988).
    [CrossRef]
  9. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993).
    [CrossRef]
  10. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995).
    [CrossRef]
  11. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
    [CrossRef]
  12. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
    [CrossRef]
  13. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
    [CrossRef]
  14. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt.39(12), 2009–2016 (2000).
    [CrossRef] [PubMed]
  15. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002).
    [CrossRef] [PubMed]
  16. T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis for laser-locked cavity ringdown spectroscopy,” Opt. Express19(9), 8092–8101 (2011).
    [CrossRef] [PubMed]
  17. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
    [CrossRef] [PubMed]
  18. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt.40(30), 5522–5529 (2001).
    [CrossRef] [PubMed]
  19. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
    [CrossRef]
  20. D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
    [CrossRef] [PubMed]
  21. Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002).
    [CrossRef]
  22. I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express13(8), 2906–2915 (2005).
    [CrossRef] [PubMed]
  23. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B16(4), 523–532 (1999).
    [CrossRef]
  24. “HITRAN 2008 Database (Version 12.0).”

2012

D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
[CrossRef] [PubMed]

2011

2006

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
[CrossRef]

2005

2004

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

2003

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

2002

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002).
[CrossRef]

2001

2000

1999

1997

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
[CrossRef]

1995

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

1993

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993).
[CrossRef]

1988

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988).
[CrossRef]

1984

1980

Anderson, D. Z.

Awtry, A. R.

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002).
[CrossRef] [PubMed]

Baer, D. S.

Baillargeon, J. N.

Ball, S. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
[CrossRef]

Benard, D. J.

Boyson, T. K.

Bussery-Honvault, B.

S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
[CrossRef]

Byer, R. L.

Calzada, M. E.

Campargue, A.

S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
[CrossRef]

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Capasso, F.

Cho, A. Y.

Collier, C. P.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Deacon, D. A. G.

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988).
[CrossRef]

Debecker, I.

Dudek, J. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Frisch, J. C.

Gmachl, C.

Gupta, M.

Gustafson, E. K.

Hanson, R. K.

Harb, C. C.

He, Y.

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002).
[CrossRef]

Herbelin, J. M.

Hodges, J. T.

D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
[CrossRef] [PubMed]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

Hofbauer, H.

Husman, M. E.

Hutchinson, A. L.

Jenouvrier, A.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Jones, R. L.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
[CrossRef]

Kassi, S.

S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
[CrossRef]

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Kosterev, A. A.

Kwok, M. A.

Langridge, J. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
[CrossRef]

Lawrence, M. J.

Layer, H. P.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

Lehmann, K. K.

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993).
[CrossRef]

Long, D. A.

D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
[CrossRef] [PubMed]

Macko, P.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Malinovsky, A. L.

Masser, C. S.

McKay, J. A.

Mikhailenko, S. N.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Miller, J. H.

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002).
[CrossRef] [PubMed]

Miller, W. W.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

Mohamed, A. K.

Naumenko, O. V.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

O’Keefe, A.

R. Provencal, M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O’Keefe, and J. R. Podolske, “Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements,” Appl. Opt.44(31), 6712–6717 (2005).
[CrossRef] [PubMed]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

O'Keefe, A.

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002).
[CrossRef]

Owano, T. G.

Paul, J. B.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Podolske, J. R.

Provencal, R.

Rabinowitz, P.

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Rakestraw, D. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Ricci, K. N.

Robichaud, D. J.

D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
[CrossRef] [PubMed]

Romanini, D.

S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
[CrossRef]

I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express13(8), 2906–2915 (2005).
[CrossRef] [PubMed]

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

Saykally, R. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Scace, G. E.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

Scherer, J. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Sivco, D. L.

Spence, T. G.

Spencer, D. J.

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
[CrossRef]

Tarsa, P. B.

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Tittel, F. K.

Totschnig, G.

Tyuterev, V. G.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

Ueunten, R. H.

Urevig, D. S.

Velasquez, A.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Voelkel, D.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

Wang, J.

Willke, B.

Winter, F.

Wist, A. D.

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

Wladyslawski, M.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Zalicki, P.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995).
[CrossRef]

Anal. Chem.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003).
[CrossRef] [PubMed]

Analyst (Lond.)

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002).
[CrossRef]

Appl. Phys. Lett.

P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004).
[CrossRef]

Chem. Phys. Lett.

S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997).
[CrossRef]

J. Chem. Phys.

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993).
[CrossRef]

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995).
[CrossRef]

D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012).
[CrossRef] [PubMed]

J. Mol. Spectrosc.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Rev. Sci. Instrum.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004).
[CrossRef]

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988).
[CrossRef]

Other

“HITRAN 2008 Database (Version 12.0).”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Theoretical simulated cavity mode signals of (a) cavity reflection and (b) cavity transmission.

Fig. 2
Fig. 2

The maximum dip depth of cavity reflection and maximum peak value of cavity transmission under different absorption loss.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for CW-CRDS based on the control of cavity reflection.AOM – acousto-optic modulator; PD – photo detector; ML – match lens; FG – function generator; PC – personal computer; HVA – high voltage amplifier.

Fig. 4
Fig. 4

The time sequence of the realization of CW-CRDS based on the control of cavity reflection. (a) The pulse signal. (b) The cavity reflected signal. (c) The trigger signal to AOM with a summation electronic inserted. (d) The cavity transmitted signal.

Fig. 5
Fig. 5

Explanation for the wrong extraction of ringdown event. (a) The pulse signal. (b) The cavity reflected signal. (c) The trigger signal to AOM. (d) The cavity transmitted signal.

Fig. 6
Fig. 6

The 2000 times measurements of ringdown events and the corresponding statistic distribution. (a), (b) Based on the RC mode. (c), (d) Based on the TC mode.

Fig. 7
Fig. 7

Voigt lineshape fitting of the absorption spectrum of C2H2 near 1530.9nm under the sample pressure of 1Torr, together with the fitting residual. (a), (b) Based on the RC mode. (c), (d) Based on the TC mode.

Fig. 8
Fig. 8

A comparison between the measured and calculated peak absorption coefficients under different total pressure in RC working mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 exp( t τ )
τ= L c[ ( 1R )+αL ]
τ 0 = L c(1R)
α= 1 c ( 1 τ 1 τ 0 )
Δα= 1 cτ Δτ τ

Metrics