Abstract

Broad-area laser (BAL) diodes have found use in numerous applications requiring multi-watt powers, but remain limited by poor spatial beam quality. A novel laser cavity that enhances the brightness of a BAL array has been demonstrated. Wavelength beam combining (WBC) is used to spatially overlap output from the emitters. Improved beam quality is achieved by imaging the fast-axis mode onto the slow axis of the BAL array. The brightness is enhanced twofold over a typical Littman-Metcalf WBC cavity, reaching 47 MW·cm−2·sr−1 at an output power of 1.16 W.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. G. Photonics, http://www.ipgphotonics.com .
  2. N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
    [CrossRef]
  3. J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
    [CrossRef]
  4. P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
    [CrossRef]
  5. H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
    [CrossRef]
  6. P. A. Crump, M. Grimshaw, J. Wang, W. Dong, S. Zhang, S. Das, J. Farmer, M. DeVito, L. S. Meng, and J. K. Brasseur, “85% power conversion efficiency 975-nm broad area diode lasers at - 50°C, 76% at 10°C,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB24.
  7. R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
    [CrossRef]
  8. P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
    [CrossRef]
  9. R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
    [CrossRef]
  10. V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett.27(3), 167–169 (2002).
    [CrossRef] [PubMed]
  11. A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
    [CrossRef]
  12. M. Chi, B. Thestrup, and P. M. Petersen, “Self-injection locking of an extraordinarily wide broad-area diode laser with a 1000-microm-wide emitter,” Opt. Lett.30(10), 1147–1149 (2005).
    [CrossRef] [PubMed]
  13. A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
    [CrossRef]
  14. S. Wolff, D. Messerschmidt, and H. Fouckhardt, “Fourier-optical selection of higher order transverse modes in broad area lasers,” Opt. Express5(3), 32–37 (1999).
    [CrossRef] [PubMed]
  15. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55(4), 334–336 (1989).
    [CrossRef]
  16. B. Liu, Y. Liu, and Y. Braiman, “Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity,” Opt. Express18(7), 7361–7368 (2010).
    [CrossRef] [PubMed]
  17. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
    [CrossRef]
  18. D. Vijayakumar, O. B. Jensen, and B. Thestrup, “980 nm high brightness external cavity broad area diode laser bar,” Opt. Express17(7), 5684–5690 (2009).
    [CrossRef] [PubMed]
  19. M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
    [CrossRef]
  20. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett.25(6), 405–407 (2000).
    [CrossRef] [PubMed]
  21. A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
    [CrossRef]
  22. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

2012 (4)

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

2010 (1)

2009 (2)

D. Vijayakumar, O. B. Jensen, and B. Thestrup, “980 nm high brightness external cavity broad area diode laser bar,” Opt. Express17(7), 5684–5690 (2009).
[CrossRef] [PubMed]

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

2007 (2)

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

2005 (2)

2004 (1)

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

2003 (1)

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

1994 (1)

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

1989 (1)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55(4), 334–336 (1989).
[CrossRef]

1985 (1)

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Arlt, S.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Bailey, R. J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Bawamia, A. I.

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Biesenbach, J.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Böldicke, S.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Braiman, Y.

Casperson, L. W.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Cenkier, M.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

Chi, M.

Choi, H. K.

Cook, C. C.

Craig, R. R.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Crump, P.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Daneu, V.

Davidheiser, R. A.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Donnelly, J. P.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Ekhteraei, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Eppich, B.

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Erbert, G.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Evans, G. A.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Fan, T. Y.

Fassbender, W.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Fily, A.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Fouckhardt, H.

Friedmann, P.

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

Fukuda, M.

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

Gilly, J.

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

Goodhue, W. D.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Harder, C. S.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Harris, C. T.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Herbstritt, M.

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

Heuer, A.

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

Huang, R. K.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Ishii, H.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Jechow, A.

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

Jensen, O. B.

Kasukawa, A.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Kelemen, M. T.

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

Kissel, H.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Leger, J. R.

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55(4), 334–336 (1989).
[CrossRef]

Lichtenstein, N.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Liu, B.

Liu, Y.

Menzel, R.

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett.27(3), 167–169 (2002).
[CrossRef] [PubMed]

Merchen, D.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Messerschmidt, D.

Minato, R.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Missaggia, L. J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Mull, D. E.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Muller, J.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Nakano, J.

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

Namegaya, T.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Ohki, Y.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Okayasu, M.

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

Pandey, R.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Paschke, K.

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Patterson, S.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Pawlik, S.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Petersen, P. M.

Plant, J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Raab, V.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400mW of TEM00 power,” Opt. Lett.27(3), 167–169 (2002).
[CrossRef] [PubMed]

Sacher, J.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

Sagahti, A.

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

Sanchez, A.

Schleife, J.

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

Schmidt, B. E.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Schnieder, F.

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Schultz, C. M.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Skoczowsky, D.

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

Stafsudd, O. M.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Stapleton, D.

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

Stry, S.

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

Sverdlov, B.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Taniguchi, H.

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Temmyo, J.

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

Thestrup, B.

Tränkle, G.

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Turner, G. W.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett.25(6), 405–407 (2000).
[CrossRef] [PubMed]

Vijayakumar, D.

Walpole, J. N.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

Weiss, S.

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Wenzel, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Wolff, S.

Yang, J. J. J.

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

Appl. Phys. B (1)

A. I. Bawamia, B. Eppich, K. Paschke, H. Wenzel, F. Schnieder, G. Erbert, and G. Tränkle, “Experimental determination of the thermal lens parameters in a broad area semiconductor laser amplifier,” Appl. Phys. B97(1), 95–101 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55(4), 334–336 (1989).
[CrossRef]

Electron. Lett. (1)

R. R. Craig, L. W. Casperson, O. M. Stafsudd, J. J. J. Yang, G. A. Evans, and R. A. Davidheiser, “Etched-mirror unstable-resonator semiconductor lasers,” Electron. Lett.21(2), 62–63 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39(2), 289–298 (2003).
[CrossRef]

M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation,” IEEE J. Quantum Electron.30(2), 471–476 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

H. Taniguchi, H. Ishii, R. Minato, Y. Ohki, T. Namegaya, and A. Kasukawa, “25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD),” IEEE J. Sel. Top. Quantum Electron.13(5), 1176–1179 (2007).
[CrossRef]

Laser Phys. (1)

A. Heuer, A. Sagahti, A. Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser,” Laser Phys.22(1), 160–164 (2012).
[CrossRef]

Opt. Commun. (1)

A. Jechow, V. Raab, R. Menzel, M. Cenkier, S. Stry, and J. Sacher, “1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz,” Opt. Commun.277(1), 161–165 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (3)

R. Pandey, D. Merchen, D. Stapleton, S. Patterson, H. Kissel, W. Fassbender, and J. Biesenbach, “Advancements in high-power diode laser stacks for defense applications,” Proc. SPIE8381, 83810G, 83810G-12 (2012).
[CrossRef]

P. Friedmann, J. Schleife, M. Herbstritt, J. Gilly, and M. T. Kelemen, “High efficiency laser sources usable for single mode fiber coupling and frequency doubling,” Proc. SPIE8277, 82771M, 82771M-10 (2012).
[CrossRef]

N. Lichtenstein, B. E. Schmidt, A. Fily, S. Weiss, S. Arlt, S. Pawlik, B. Sverdlov, J. Muller, and C. S. Harder, “DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry,” Proc. SPIE5336, 77–83 (2004).
[CrossRef]

Semicond. Sci. Technol. (1)

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol.27(4), 045001 (2012).
[CrossRef]

Other (3)

P. A. Crump, M. Grimshaw, J. Wang, W. Dong, S. Zhang, S. Das, J. Farmer, M. DeVito, L. S. Meng, and J. K. Brasseur, “85% power conversion efficiency 975-nm broad area diode lasers at - 50°C, 76% at 10°C,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB24.

I. P. G. Photonics, http://www.ipgphotonics.com .

A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Standard and mode-imaging wavelength beam combined (WBC) cavities. (a) Basis of both the standard and mode-imaging cavities. The 500-mm focal length secondary fast-axis collimating lens minimizes the fast-axis beam divergence while the 1.5:1 slow-axis telescope reduces the beam waist in the slow axis to approximately 90% of the collimated fast-axis beam waist. (b) Loop mirror used to switch fast- and slow-axis modes. The retroreflector is used as a right-angle prism with the reflection axis rotated 45° relative to the fast and slow axis of the incident beam. (c) Flat output coupler followed by thermal head used to measure output power for the standard WBC cavities.

Fig. 2
Fig. 2

Diagram illustrating mode swapping with retroreflector. (a) For maximum feedback the half-wave plate rotates the TE polarization of the incident beam to be parallel with the reflection axis of the retroreflector. (b) The beam reflects across the reflection axis of the retroreflector swapping the fast- and slow-axis spatial modes present in the incident beam. Since the polarization is parallel to the reflection axis, it remains unchanged after retroreflection. (c) The retroreflected beam passes back through the half-wave plate where the polarization is rotated back parallel to the TE polarization amplified by the laser diodes. The beam is depicted as astigmatic for clarity, but a stigmatic beam maximizes coupling of the retroreflected beam back into the fast- and slow-axis facets of the BAL emitters.

Fig. 3
Fig. 3

Characterization of aberrations from the retroreflector. The highest and lowest intensities are shown magenta and black, respectively. Images were taken of a retroreflected HeNe beam with the incident beam centered (a) directly on the retroreflector’s reflection axis and (b) far away from the reflection axis. (c) Image of the incident HeNe beam used to test the retroreflector. The beam distortion in (a) is due to interference between the two sides of the reflected beam. The two sides walk across each other due to the imperfect 90° angle between the two reflecting surfaces.

Fig. 4
Fig. 4

(a) Spectrum from the mode-imaging cavity taken at a drive current of 9 A producing 1.16 W of output power. The spectrum is typical of all the wavelength beam combined (WBC) laser cavities investigated. Each emission peak corresponds to one emitter in the array with center wavelengths determined by the particular incident and first-order diffraction angle from the grating. The centroid of the spectrum is at 983 nm. (b) L-I curves for the standard WBC cavity without (black squares) and with (red circles) a 130-μm wide intracavity slit used for mode filtering and for the mode-imaging cavity (blue upward pointing triangles).

Fig. 5
Fig. 5

(a) Average slow-axis beam quality as a function of output power for the standard wavelength beam combined (WBC) cavity without (black squares) and with (red circles) intracavity mode filtering and for the mode-imaging cavity (blue upward pointing triangles). Slow-axis M2 values for both the standard cavity employing mode filtering and the mode-imaging cavities are improved over the standard cavity without mode filtering, and follow very similar trends with the notable exception that the standard cavity with mode filtering could not generate output powers beyond ~1 W. (b) Average brightness as a function of output power for all three cavity configurations. The standard WBC cavity employing mode filtering (red circles) and the mode-imaging cavity (blue upward pointing triangles) show maximum brightnesses of greater than 45 MW·cm−2·sr−1. Error bars indicate ± one standard deviation from multiple measurements as determined from the cavity configuration with the highest measured standard deviation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B= P λ 2 M x 2 M y 2 ,

Metrics