Abstract

A simple and low-crosstalk 1 × 4 silicon mode (de)multiplexer based on multimode grating-assisted-couplers is proposed. Mode transitions can be flexibly controlled by designing the grating period at the phase-matching condition. Due to the contra-directional coupling, precise control of the coupling strength and the coupling length are not needed in the system. Calculation results show that the insertion loss and the 3 dB bandwidths of the device are 0.2 dB and 3.7 nm, 0.34 dB and 7.6 nm, and 0.21 dB and 11.8 nm for the channels which (de)multiplex to the 1st, 2nd, and 3rd modes of the bus waveguide, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  2. J. D. Love and N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol.30(3), 304–309 (2012).
    [CrossRef]
  3. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol.30(15), 2421–2426 (2012).
    [CrossRef]
  4. D. Dai, “Silicon mode- (de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on- chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
    [CrossRef]
  5. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun1(8), 116 (2010).
    [CrossRef] [PubMed]
  6. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19(3), 2401–2409 (2011).
    [CrossRef] [PubMed]
  7. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
    [CrossRef]
  8. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett.38(1), 1–3 (2013).
    [CrossRef] [PubMed]
  9. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21(3), 3633–3650 (2013).
    [CrossRef] [PubMed]
  10. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt.19(16), 2848–2855 (1980).
    [CrossRef] [PubMed]
  11. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36(20), 3999–4001 (2011).
    [CrossRef] [PubMed]
  12. Lumerical FDTD Solution, http://www.lumerical.com/.
  13. RSOFT Design Group, http://www.rsoftdesign,com/.
  14. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

2013 (2)

2012 (3)

2011 (3)

2010 (1)

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun1(8), 116 (2010).
[CrossRef] [PubMed]

2008 (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

1980 (1)

Baehr-Jones, T.

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Chrostowski, L.

Cunningham, J. E.

Dai, D.

D. Dai, “Silicon mode- (de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on- chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
[CrossRef]

Fainman, Y.

Hochberg, M.

Hu, T.

Ikeda, K.

Ishizaka, Y.

Jaeger, N. A.

Jaeger, N. A. F.

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
[CrossRef]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36(20), 3999–4001 (2011).
[CrossRef] [PubMed]

Jiang, G.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett.38(1), 1–3 (2013).
[CrossRef] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Jiang, X.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett.38(1), 1–3 (2013).
[CrossRef] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Kawaguchi, Y.

Koshiba, M.

Krishnamoorthy, A. V.

Lin, C.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21(3), 3633–3650 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
[CrossRef]

Liu, Y.

Love, J. D.

Luo, Y.

Mizrahi, A.

Nezhad, M. P.

Qiu, H.

Raj, K.

Riesen, N.

Saitoh, K.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Shao, H.

Shi, W.

Shubin, I.

Sun, P. C.

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun1(8), 116 (2010).
[CrossRef] [PubMed]

Tan, D. T. H.

Taylor, H. F.

Uematsu, T.

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Wang, X.

Yang, J.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett.38(1), 1–3 (2013).
[CrossRef] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Yeh, P.

Yu, P.

Yun, H.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21(3), 3633–3650 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
[CrossRef]

Zamek, S.

Zhang, W.

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
[CrossRef]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36(20), 3999–4001 (2011).
[CrossRef] [PubMed]

Zheng, X.

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett.100(12), 121118 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon- on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Nat Commun (1)

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun1(8), 116 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (3)

D. Dai, “Silicon mode- (de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on- chip with a single-wavelength-carrier light,” Asia Communications and Photonics Conference (2012).
[CrossRef]

Lumerical FDTD Solution, http://www.lumerical.com/.

RSOFT Design Group, http://www.rsoftdesign,com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of MGACCs with the corrugation width D, the coupling length L, the Bragg grating period Λ, and the duty cycle 50%.

Fig. 2
Fig. 2

Schematic configuration of an optical link with the MGACCs-based MDM technology.

Fig. 3
Fig. 3

Calculated effective indices of the modes with the phase-match condition. (n0, n1, n2, n3 are the effective index of the fundamental mode of the access waveguide and the 1st, 2nd, 3rd modes of the bus waveguide.)

Fig. 4
Fig. 4

. The relationships of the coupling coefficients and (a) the corrugation width D, (b) the displacement of the corrugation, for the fundamental mode of the access waveguide coupling to the 1st, 2nd, 3rd modes of the bus waveguide.

Fig. 5
Fig. 5

. Output powers from the through-port and drop-port as the coupling length L, for the fundamental mode of the access waveguide coupling to the 1st, 2nd, 3rd modes of the bus waveguide.

Fig. 6
Fig. 6

3-D FDTD simulations of the MGACCs for TE light injected into the access waveguide at the wavelength of 1550 nm, with coupling length of 28 μm. (a) without the corrugation. (b)-(d) for 1st mode, 2nd and 3rd contra-directional coupling, respectively. The waveguides are outlined by the black lines.

Fig. 7
Fig. 7

The through-port and drop-port responses of the power transfer from the fundamental mode of the access waveguides to the 1st, 2nd and 3rd modes of the bus waveguide. The coupling length and the grating periods are 250 μm and 303 nm, 150 μm and 314 nm, and 90 μm and 333 nm for (a), (b) and (c), respectively.

Fig.8
Fig.8

The response of the demultiplexer of the channel 2 to different modes propagating in the bus waveguide.

Fig. 9
Fig. 9

The output responses of the channels 1-3 which include the corresponding (de)multiplexers and the bus waveguide.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ(x,y,z)= A m φ m (x,y)exp(i β m z).
d A i dz = κ il exp(i Δ il z) A l .
d A l dz = κ li exp(i Δ il z) A i .
κ il = ω 4 φ i * (x,y)u(x,y) φ l (x,y)dxdy .
λ/Λ=( n 0 + n l )(l=2,3,4...).

Metrics