Abstract

An optically pumped semiconductor disk laser was mode-locked for the first time by employing a single-walled carbon nanotube saturable absorber. Stable passive fundamental mode-locking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett.25(10), 704–706 (2000).
    [CrossRef] [PubMed]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000).
    [CrossRef]
  3. E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).
  4. A. Bhatnagar, C. Debaes, R. Chen, N. C. Helman, G. A. Keeler, D. Agarwal, H. Thienpont, and D. A. B. Miller, “Receiver-less clocking of a CMOS digital circuit using short optical pulses,” in 2002 IEEE/LEOS Annual Meeting; Conference Proceedings, 15th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Glasgow, Scotland, 2002, 127–8.
  5. A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  7. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
    [CrossRef] [PubMed]
  8. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
    [CrossRef]
  9. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
    [CrossRef]
  10. J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
    [CrossRef]
  11. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992).
    [CrossRef] [PubMed]
  12. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  13. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  14. U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
    [CrossRef]
  15. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
    [CrossRef]
  16. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
    [CrossRef]
  17. U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
    [CrossRef]
  18. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
    [CrossRef]
  19. H.-R. Chen, Y.-G. Wang, C.-Y. Tsai, K.-H. Lin, T.-Y. Chang, J. Tang, and W.-F. Hsieh, “High-power, passively mode-locked Nd:GdVO₄ laser using single-walled carbon nanotubes as saturable absorber,” Opt. Lett.36(7), 1284–1286 (2011).
    [CrossRef] [PubMed]
  20. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
    [CrossRef] [PubMed]
  21. F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
    [CrossRef]
  22. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
    [CrossRef]
  23. G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
    [CrossRef]
  24. J. J. LePore, “An improved technique for selective etching of GaAs and Ga1-xAlxAs,” J. Appl. Phys.51(12), 6441–6442 (1980).
    [CrossRef]
  25. O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
    [CrossRef] [PubMed]
  26. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
    [CrossRef]

2012 (2)

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

2011 (2)

2009 (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

2008 (1)

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

2006 (1)

U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

2005 (3)

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

2004 (4)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
[CrossRef]

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2002 (2)

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

2000 (2)

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

1992 (1)

1980 (1)

J. J. LePore, “An improved technique for selective etching of GaAs and Ga1-xAlxAs,” J. Appl. Phys.51(12), 6441–6442 (1980).
[CrossRef]

Agnesi, A.

Ahn, Y. H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Apostolopoulos, V.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Asom, M. T.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Baek, I. H.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

Baughman, R. H.

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Boyd, G. D.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Butterworth, S.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Caprara, A.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Cassan, E.

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Ch’ng, Y. H.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Chang, T.-Y.

Charles, J.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Chen, H.-R.

Chilla, J.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Chiu, T. H.

Cho, W. B.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Choi, S. Y.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

Chung, S.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Dalton, A. B.

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Farrer, I.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Ferguson, J. F.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Foreman, H. D.

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Garnache, A.

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Gaylord, T. K.

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

Glytsis, E. N.

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

Golling, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Griebner, U.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
[CrossRef]

Gripp, J.

Grüner-Nielsen, L.

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Hoogland, S. H.

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Hsieh, W.-F.

Jablonski, M.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kara, P.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Keller, U.

U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992).
[CrossRef] [PubMed]

Kim, K.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Klopp, P.

U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
[CrossRef]

Koch, S. W.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Korovyanko, O. J.

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Kunert, B.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Laval, S.

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Lee, H. W.

Lee, S.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

LePore, J. J.

J. J. LePore, “An improved technique for selective etching of GaAs and Ga1-xAlxAs,” J. Appl. Phys.51(12), 6441–6442 (1980).
[CrossRef]

Lim, H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Lin, K.-H.

Mamyshev, P. V.

Mamysheva, N.

Marris, D.

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Meindl, J. D.

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

Mihoubi, Z.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Miller, D. A. B.

Mollenauer, L. F.

Moloney, J. V.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Moser, M.

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

Mule, A. V.

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

Neubelt, M. J.

Ohki, K.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Paschotta, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Pasiskevicius, V.

Petrov, V.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Quarterman, A. H.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Reed, M.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Reffert, S.

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

Reid, R. C.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Ritchie, D. A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Rotermund, F.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011).
[CrossRef] [PubMed]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Rouviere, M.

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Scheller, M.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Schmidt, A.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

Set, S. Y.

Sheng, C.-X.

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Spinelli, L.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Spühler, G. J.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

Steinmeyer, G.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Stolz, W.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Tanaka, Y.

Tang, J.

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

Tropper, C.

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Tsai, C.-Y.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Vardeny, Z. V.

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Veng, T.

Vivien, L.

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Wang, T. L.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

Wang, Y.-G.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Weyers, M.

U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
[CrossRef]

Wilcox, K. G.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Yaguchi, H.

Yeom, D. I.

Yeom, D.-I.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

Yim, J. H.

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

Zeitschel, A.

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Zorn, M.

U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
[CrossRef]

Appl. Phys. B (1)

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008).
[CrossRef]

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001).
[CrossRef]

Comparison between electrical and optical global clock distributions for CMOS integrated circuits (1)

E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).

Electron. Lett. (1)

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

IEEE Trans. Very Large Scale Integration (VLSI) Systems (1)

A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).

J. Appl. Phys. (1)

J. J. LePore, “An improved technique for selective etching of GaAs and Ga1-xAlxAs,” J. Appl. Phys.51(12), 6441–6442 (1980).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D (1)

C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004).
[CrossRef]

Nat. Photonics (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009).
[CrossRef]

Nature (3)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rep. (1)

U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

Proc. SPIE (1)

J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004).
[CrossRef]

Quantum Electron. (1)

F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012).
[CrossRef]

Other (2)

U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012).
[CrossRef]

A. Bhatnagar, C. Debaes, R. Chen, N. C. Helman, G. A. Keeler, D. Agarwal, H. Thienpont, and D. A. B. Miller, “Receiver-less clocking of a CMOS digital circuit using short optical pulses,” in 2002 IEEE/LEOS Annual Meeting; Conference Proceedings, 15th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Glasgow, Scotland, 2002, 127–8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of OPSDL and design of the gain structure.

Fig. 2
Fig. 2

Linear transmission of the SWCNT-SA with Fresnel-loss correction.

Fig. 3
Fig. 3

Nonlinear transmission curve and (inset) pump-probe trace of the SWCNT-SA. The fit-function for the nonlinear transmission can be found in [26].

Fig. 4
Fig. 4

(a) Average output powers and (b) laser spectra in cw and mode-locked operation at maximum output powers.

Fig. 5
Fig. 5

Intensity-autocorrelation trace of the SWCNT-SA mode-locked OPSDL, resulting in a pulse length of 1.23 ps.

Fig. 6
Fig. 6

RF spectra of the SWCNT-SA mode-locked OPSDL at 100 mW output power. (a) shows the frequency comb recorded with a resolution bandwidth of 3 MHz, averaged over 100 measurements. (b) shows a high-resolution single scan, recorded with a bandwidth of 3 kHz. The signal is normalized to the carrier maximum.

Metrics