Abstract

The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP02 mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  2. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001).
    [CrossRef] [PubMed]
  3. W. J. Wadsworth, N. Y. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  4. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett.30(23), 3132–3134 (2005).
    [CrossRef] [PubMed]
  5. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
    [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  7. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, Cambridge, 2010).
  8. J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: how tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Technol.18(5), 315–321 (2012).
    [CrossRef]
  9. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32(4), 340–342 (2007).
    [CrossRef] [PubMed]
  10. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett.27(9), 698–700 (2002).
    [CrossRef] [PubMed]
  11. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol.29(13), 1980–1987 (2011).
    [CrossRef]
  12. J. Carpenter and T. D. Wilkinson, “Characterization of multimode by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012).
    [CrossRef]
  13. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B19(4), 765–771 (2002).
    [CrossRef]
  14. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett.28(19), 1820–1822 (2003).
    [CrossRef] [PubMed]
  15. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32(15), 2173–2175 (2007).
    [CrossRef] [PubMed]
  16. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16(3), 2147–2152 (2008).
    [CrossRef] [PubMed]
  17. P. Nandi, Z. Chen, A. Witkowska, W. J. Wadsworth, T. A. Birks, and J. C. Knight, “Characterization of a photonic crystal fiber mode converter using low coherence interferometry,” Opt. Lett.34(7), 1123–1125 (2009).
    [CrossRef] [PubMed]
  18. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007).
    [CrossRef] [PubMed]
  19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007).
    [CrossRef]
  20. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express16(4), 2670–2675 (2008).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Academic Press, 2007).
  22. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999).
    [CrossRef]
  23. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004).
    [CrossRef] [PubMed]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983) p. 253.
  25. G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
    [CrossRef]
  26. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
    [CrossRef]
  27. M. Delgado-Pinar, P. J. Mosley, J. C. Knight, T. A. Birks, and W. J. Wadsworth, “Visible supercontinuum generation in the femtosecond regime in submicron structures,” Nonlinear Photonics Topical Meeting (Karlsruhe), paper NWD3 (2010).
    [CrossRef]
  28. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
    [CrossRef]
  29. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd Ed. (Princeton Univ. Press, 2008).
  30. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express1(2), 179–184 (2011).
    [CrossRef]
  31. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
    [CrossRef]
  32. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
    [CrossRef]
  33. K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
    [CrossRef]
  34. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
    [CrossRef]
  35. BeamPROP by RSoft, http://www.rsoft.com
  36. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices,” IEE Proc. J 138, 343–354 (1991).
  37. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004).
    [CrossRef] [PubMed]

2012 (2)

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: how tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Technol.18(5), 315–321 (2012).
[CrossRef]

J. Carpenter and T. D. Wilkinson, “Characterization of multimode by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012).
[CrossRef]

2011 (2)

2009 (1)

2008 (2)

2007 (5)

K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007).
[CrossRef] [PubMed]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32(4), 340–342 (2007).
[CrossRef] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32(15), 2173–2175 (2007).
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2005 (2)

G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett.30(23), 3132–3134 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

2002 (2)

2001 (2)

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001).
[CrossRef] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

2000 (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
[CrossRef] [PubMed]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999).
[CrossRef]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

1994 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
[CrossRef]

1985 (1)

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

Barthélémy, A.

Biancalana, F.

Bird, D. M.

G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Birks, T. A.

Blandin, P.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Carpenter, J.

Chen, Z.

Cherif, R.

Coen, S.

Coker, A.

Couderc, V.

Degiorgio, V.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
[CrossRef]

Druon, F.

Dudley, J. M.

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Eggleton, B. J.

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Fiorentino, M.

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Georges, P.

Ghalmi, S.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

Gris-Sánchez, I.

Grossard, N.

Hanna, M.

Hedley, T.

G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Hirano, M.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Hoshi, Y.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

Hosono, H.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

Joly, N. Y.

Kajihara, K.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

Knight, J. C.

Kumar, P.

Lacroix, S.

Lai, K.

Lee, J. H.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Leon-Saval, S. G.

Leproux, P.

Lesvigne, C.

Maillotte, H.

Maksymiuk, L.

Mangan, B. J.

Mason, M. W.

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999).
[CrossRef]

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Mussot, A.

Nagasawa, K.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

Nandi, P.

Ohki, Y.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

Pearce, G. J.

G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
[CrossRef]

Popov, S. V.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Provino, L.

Ramachandran, S.

Ranka, J. K.

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Russell, P. St. J.

W. J. Wadsworth, N. Y. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999).
[CrossRef]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
[CrossRef]

Sharping, J. E.

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
[CrossRef]

Siuzdak, J.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004).
[CrossRef] [PubMed]

Skuja, L.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

St J Russell, P.

Stentz, A. J.

Stepniak, G.

Stone, J. M.

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: how tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Technol.18(5), 315–321 (2012).
[CrossRef]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

Sylvestre, T.

Tartara, L.

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
[CrossRef]

Taylor, J. R.

Tonello, A.

Travers, J. C.

van Howe, J.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
[CrossRef]

Wadsworth, W. J.

Wang, Z.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994).
[CrossRef]

Wilkinson, T. D.

Windeler, R. S.

Wise, F.

Witkowska, A.

Xu, C.

Yahagi, K.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

Yan, M.

Yan, M. F.

Yulin, A. V.

Zghal, M.

Zhou, S.

Appl. Phys. Lett. (1)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985).
[CrossRef]

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (10)

P. Nandi, Z. Chen, A. Witkowska, W. J. Wadsworth, T. A. Birks, and J. C. Knight, “Characterization of a photonic crystal fiber mode converter using low coherence interferometry,” Opt. Lett.34(7), 1123–1125 (2009).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004).
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett.30(23), 3132–3134 (2005).
[CrossRef] [PubMed]

K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007).
[CrossRef] [PubMed]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32(4), 340–342 (2007).
[CrossRef] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32(15), 2173–2175 (2007).
[CrossRef] [PubMed]

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett.27(9), 698–700 (2002).
[CrossRef] [PubMed]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett.28(19), 1820–1822 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Opt. Technol. (1)

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: how tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Technol.18(5), 315–321 (2012).
[CrossRef]

Phys. Rev. B (1)

G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (7)

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, Cambridge, 2010).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983) p. 253.

M. Delgado-Pinar, P. J. Mosley, J. C. Knight, T. A. Birks, and W. J. Wadsworth, “Visible supercontinuum generation in the femtosecond regime in submicron structures,” Nonlinear Photonics Topical Meeting (Karlsruhe), paper NWD3 (2010).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd Ed. (Princeton Univ. Press, 2008).

BeamPROP by RSoft, http://www.rsoft.com

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices,” IEE Proc. J 138, 343–354 (1991).

G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Academic Press, 2007).

Supplementary Material (2)

» Media 1: MOV (169 KB)     
» Media 2: MOV (75 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic group delay (a) and dispersion (b) spectra, indicating the zero dispersion wavelengths ZDW1 and ZDW2 and the matching wavelength MW. (c) Schematic PCF cross-section. We define the core diameter to be that of the largest circle that can be inscribed in the core, which for a geometrically-perfect structure is 2Λ − d.

Fig. 2
Fig. 2

Calculated group delay (a) and dispersion (b) spectra for the LP01 mode of a microwire, for (left to right) diameters of 0.4, 0.5, 0.7, 0.9, 1.2 and 2.0 µm. (c) Variations of key LP01 mode dispersion wavelengths with microwire diameter. The diameter corresponding to ZDW1 = 532 nm, and the corresponding MW, are indicated. (d-f) As (a-c) but for the LP02 mode and respective diameters 0.6, 0.7, 1.0, 1.5, 2.5 and 4.5 µm. (g,h) As (a,b) but for the LP02 mode of a PCF with d/Λ = 0.85 and (left to right) Λ = 1.5, 1.6, 1.8, 2.0, 2.2 and 2.4 µm (core diameters 1.73 - 2.76 µm). (i) MW versus d/Λ for the LP02 mode of PCFs with various values of Λ.

Fig. 3
Fig. 3

(a) Group delay GD at ZDW2 versus ZDW2 (as varied by changing the scale of the fiber), for the LP01 and LP02 modes of a microwire (curves) and the LP02 modes of three PCFs (points). GD in bulk silica is also plotted. (b) ZDW2 versus scale for the same fibers (points), with fits to straight lines through the origin. The transverse length scale is the diameter for microwires and Λ/1.6 for PCFs: the arbitrary factor of 1.6 is chosen simply to avoid overlapping the microwire data. All results include material dispersion.

Fig. 4
Fig. 4

(a) SEM of fiber 1. (b,c) Measured attenuation spectra for fiber 1's LP01 (b) and LP02 (c) modes. The points are more-reliable single-wavelength measurements.

Fig. 5
Fig. 5

(a) Measured LP01 dispersion spectra for both fibers. (b) Simulated LP01 and LP02 dispersion spectra for fiber 1. The points are measured LP01 values from (a). (c) Calculated relation between LP02 ZDW1 and LP01 ZDW1 for PCFs with differing Λ, d/Λ and distortions of the innermost holes. Round points are undistorted, square points have distortions, d/Λ = 0.78 (black), 0.80 (red), 0.85 (green), 0.90 (blue), 0.95 (cyan), 0.998 (magenta). The crosses are simulations of experimental fibers 1 and 2.

Fig. 6
Fig. 6

Cross sections at locations A-H along a forward mode convertor. (a) Simulated fields for an LP01 input at A (Media 1, includes a reverse mode convertor Hʹ-Aʹ beyond H). Red/blue indicate opposite phases, grey circles are hole boundaries. (b) Optical micrographs of an experimental structure made from fiber 1, to the same scale. The holey region at locations A and H is 23 µm across. (c-e) Measured near-field patterns for light with wavelengths of (c) 400 nm, (d) 800 nm and (e) 1100 nm. (f) Measured far-field patterns for white light.

Fig. 7
Fig. 7

(a)–(c) Calculated fields at B, for (a) the fundamental mode, (b) the 10th mode and (c) the 9th mode. (d) Simulated fields at locations H′-B′ along a reverse mode convertor, for an LP01 input at H′ (Media 2). An LP02 input at H′ would give the reverse of Fig. 6(a). (e) Experimental near-field pattern at the end of a reverse transition H′-B′, for input light of wavelength 800 nm in the LP01 mode at H′.

Fig. 8
Fig. 8

(a) Optical micrographs (to the same scale, 5 µm scale bar) of fiber 1 before (top) and after (bottom) heating to form a mode filter. (b) Setup with mode filter (MF) at the input of a mode convertor (MC) followed by untreated fiber. The dotted box shows the reversed MC and further fiber used in the final experiments.

Fig. 9
Fig. 9

(a,b) Low power LP02 output spectra for 1.8 m of fibers 1 and 2 respectively, with MI sidebands in both fibers and a dispersive wave at 490 nm for fiber 2. (c,e) As (a,b) for higher output powers leading to supercontinuum (outer to inner traces) of (c) 1.9, 1.1, 0.60, 0.30, and 0.19 mW and (e) fiber 2 at 1.9, 1.2, 0.49, 0.32, and 0.24 mW. (d) The UV end of spectrum (e) for 1.9 mW. Vertical scales 10 dB per division, resolutions (a) 0.2 nm, (b,c,e) 2 nm, (d) 5 nm.

Fig. 10
Fig. 10

(a,b) LP02 output spectra for 0.8 m of fibers 1 and 2 respectively. (c) Corresponding spectrum for 0.3 m of fiber 1. Vertical scales 10 dB per division, resolution 2 nm. (d,e) Calculated group delay (black) for (d) fiber 1 and (e) fiber 2, with measured pairs of supercontinuum edge wavelengths (red) for a range of fiber lengths and output powers.

Fig. 11
Fig. 11

(a) Light patterns at (left) the input Hʹ and (right) the output P of a second, reversed, mode convertor, after linear propagation of white light. Top to bottom; near field at 400, 800 and 1100 nm, and far field for white light. (b) Output supercontinuum spectra and near-field patterns generated in 4 m of fiber between the two mode convertors, before (P) and after (H') the second one was removed. The vertical offset of the traces is due to arbitrarily-different coupling into the OSA: the total output powers were 1.60 mW (H') and 1.55 mW (P). Vertical scale 10 dB per division, resolution 5 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 1 (ω)= dβ dω = 1 α d β 0 d ω 0 d ω 0 dω = β 1,0 ( ω 0 )= β 1,0 (αω).

Metrics