Abstract

The unique physical effect-Kovacs effect is explored to enhance the performance of EO modulators by employing the non-thermal equilibrium state nanodisordered KTN crystals created by super-cooling process, which can have a significant 3.5 fold increase in quadratic electro-optic coefficient. This enables to reduce the switching half wave voltage (almost by half) so that a broadband (~GHz range) and large field of view (+/−30 deg) electro-optic modulator can be realized with much lowered driving power, which can be very useful for a variety of applications: laser Q-switches, laser pulse shaping, high speed optical shutters and modulating retro reflectors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cutchen, “PLZT thermal/flash protective goggles: device concept and constraints,” Ferroelectrics27(1), 173–178 (1980).
    [CrossRef]
  2. G. H. Haertling, “PLZT electrooptic materials and applications - a review,” Ferroelectrics75(1), 25–55 (1987).
    [CrossRef]
  3. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
    [CrossRef]
  4. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
    [CrossRef]
  5. T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).
  6. E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
    [CrossRef]
  7. J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
    [CrossRef]
  8. J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time,” Opt. Express20(24), 27382–27387 (2012).
    [CrossRef] [PubMed]
  9. E. Bouchbinder and J. Langer, “Nonequilibrium thermodynamics of the Kovacs effect,” Soft Matter6(13), 3065–3073 (2010).
    [CrossRef]
  10. E. DelRe and C. Conti, Nonlinear Photonics and Novel Optical Phenomena (Springer, 2012), Chap. 8.
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 1984), pp. 221.
  12. A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mater. Express1(3), 332–343 (2011).
    [CrossRef]
  13. X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
    [CrossRef]

2012 (2)

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time,” Opt. Express20(24), 27382–27387 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mater. Express1(3), 332–343 (2011).
[CrossRef]

X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
[CrossRef]

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

2010 (1)

E. Bouchbinder and J. Langer, “Nonequilibrium thermodynamics of the Kovacs effect,” Soft Matter6(13), 3065–3073 (2010).
[CrossRef]

2007 (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

1987 (1)

G. H. Haertling, “PLZT electrooptic materials and applications - a review,” Ferroelectrics75(1), 25–55 (1987).
[CrossRef]

1980 (1)

J. Cutchen, “PLZT thermal/flash protective goggles: device concept and constraints,” Ferroelectrics27(1), 173–178 (1980).
[CrossRef]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

1964 (1)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Agranat, A.

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

Agranat, A. J.

Agranat, J.

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

Bouchbinder, E.

E. Bouchbinder and J. Langer, “Nonequilibrium thermodynamics of the Kovacs effect,” Soft Matter6(13), 3065–3073 (2010).
[CrossRef]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Conti, C.

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time,” Opt. Express20(24), 27382–27387 (2012).
[CrossRef] [PubMed]

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

Cutchen, J.

J. Cutchen, “PLZT thermal/flash protective goggles: device concept and constraints,” Ferroelectrics27(1), 173–178 (1980).
[CrossRef]

DelRe, E.

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time,” Opt. Express20(24), 27382–27387 (2012).
[CrossRef] [PubMed]

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

Fujiura, K.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Gumennik, A.

Haertling, G. H.

G. H. Haertling, “PLZT electrooptic materials and applications - a review,” Ferroelectrics75(1), 25–55 (1987).
[CrossRef]

Imai, T.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Kurzweil-Segev, Y.

Langer, J.

E. Bouchbinder and J. Langer, “Nonequilibrium thermodynamics of the Kovacs effect,” Soft Matter6(13), 3065–3073 (2010).
[CrossRef]

Liu, B.

X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
[CrossRef]

Nakamura, K.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

Parravicini, J.

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time,” Opt. Express20(24), 27382–27387 (2012).
[CrossRef] [PubMed]

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

Sasaura, M.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

Skinner, J.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Spinozzi, E.

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Wang, J.

X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
[CrossRef]

Wang, X.

X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
[CrossRef]

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Adv. Mat. Res (1)

X. Wang, J. Wang, and B. Liu, “Growth and properties of cubic potassium tantalate niobate crystals,” Adv. Mat. Res306–307, 352–357 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

J. Parravicini, A. Agranat, C. Conti, and E. Delre, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101(11), 111104 (2012).
[CrossRef]

Ferroelectrics (2)

J. Cutchen, “PLZT thermal/flash protective goggles: device concept and constraints,” Ferroelectrics27(1), 173–178 (1980).
[CrossRef]

G. H. Haertling, “PLZT electrooptic materials and applications - a review,” Ferroelectrics75(1), 25–55 (1987).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Nat. Photonics (1)

E. DelRe, E. Spinozzi, J. Agranat, and C. Conti, “Scale free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5(1), 39–42 (2011).
[CrossRef]

NTT Tech. Rev. (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5(9), 1–8 (2007).

Opt. Express (1)

Opt. Mater. Express (1)

Soft Matter (1)

E. Bouchbinder and J. Langer, “Nonequilibrium thermodynamics of the Kovacs effect,” Soft Matter6(13), 3065–3073 (2010).
[CrossRef]

Other (2)

E. DelRe and C. Conti, Nonlinear Photonics and Novel Optical Phenomena (Springer, 2012), Chap. 8.

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 1984), pp. 221.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A conceptual illustration of electric susceptibility as a function of temperature for a nanodisordered KTN crystal with different temperature cycling histories. Solid curve: reduce decreasing temperature, dashed curve: increase increasing temperature [10].

Fig. 2
Fig. 2

A conceptual illustration of a transversal large aperture nanodisordered KTN crystal based electro-optic modulator.

Fig. 3
Fig. 3

(a) A schematic sketch of transverse EO modulator; (b) picture of fabricated transverse EO modulator.

Fig. 4
Fig. 4

The experimentally measured transmission quadratic EO coefficient as a function of temperature. Circle line: decreasing temperature history; Square line: increasing temperature history.

Fig. 5
Fig. 5

The experimentally measured response time of the nanodisordered KTN crystal based quadratic EO modulator.

Fig. 6
Fig. 6

The experimentally measured extinction ratio as a function of incident angle. Solid line: the result for nanodisordered KTN crystal based quadratic EO modulator; dashed line: the result for lithium niobate based EO modulator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

χ 1 (T T c ) δ ,
r c 1 (T T c ) δ/2 .
U= 1 2 ε V | E | 2 dV = 1 2 ε 0 ε r E 2 L×w×t 1 2 ε 0 χ E 2 L×w×t,
Δn 1 2 n 0 3 ε 0 2 χ 2 ( g 11 g 12 ) E 2 ,
E π = λ n 0 3 ε 0 2 χ 2 ( g 11 g 12 )t ,
U π 1 2 ε 0 χ E 2 L×w×t= λL×w 2 n 0 3 ε 0 χ( g 11 g 12 ) .
V π = E π w= λ w 2 n 0 3 ε 0 2 χ 2 ( g 11 g 12 )t ,
s 11 s 12 = ε 0 2 χ 2 ( g 11 g 12 )= λ w 2 n 0 3 t × 1 V π 2 .

Metrics