Abstract

Several continuous-wave Nd:YVO4 self-Raman lasers based on the primary and secondary Raman transitions of YVO4 (893cm−1 and 379cm−1 respectively) are reported in this paper. Laser outputs were obtained at a wavelength of 1109nm, 1158nm and 1231nm with maximum output powers of 1.0W, 700mW and 540mW respectively. The respective absorbed pump power to Raman output power conversion efficiencies were measured at 8.4%, 5.4%, and 5.4%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
    [CrossRef]
  2. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 692–704 (2007).
    [CrossRef]
  3. J. H. Lock and K. C. S. Fong, “Retinal Laser Photocoagulation,” Med. J. Malaysia65(1), 88–94, quiz 95 (2010).
    [PubMed]
  4. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
    [CrossRef]
  5. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett.29(21), 2524–2526 (2004).
    [CrossRef] [PubMed]
  6. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett.30(13), 1701–1703 (2005).
    [CrossRef] [PubMed]
  7. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005).
    [CrossRef] [PubMed]
  8. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett.35(17), 2964–2966 (2010).
    [CrossRef] [PubMed]
  9. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express19(7), 6938–6944 (2011).
    [CrossRef] [PubMed]
  10. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012).
    [CrossRef] [PubMed]
  11. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett.37(14), 2790–2792 (2012).
    [CrossRef] [PubMed]
  12. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  13. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010).
    [CrossRef] [PubMed]
  14. T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
    [CrossRef]
  15. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
    [CrossRef]
  16. Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
    [CrossRef]
  17. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004).
    [CrossRef] [PubMed]
  18. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett.34(18), 2763–2765 (2009).
    [CrossRef] [PubMed]
  19. F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
    [CrossRef]
  20. P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett.32(9), 1114–1116 (2007).
    [CrossRef] [PubMed]
  21. F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
    [CrossRef]
  22. S. Ding, M. Wang, S. Wang, and W. Zhang, “Investigation on LD end-pumped passively Q-switched c-cut Nd: YVO4 self-Raman laser,” Opt. Express21(11), 13052–13061 (2013).
    [CrossRef] [PubMed]
  23. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “330 mW CW yellow emission from miniature self-Raman laser based on direct HR-coated Nd:YVO4 crystal,” IQEC/CLEO Pacific Rim, p. C289 (2011).
  24. J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express20(14), 15180–15185 (2012).
    [CrossRef] [PubMed]
  25. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
    [CrossRef]
  26. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
    [CrossRef]
  27. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
    [CrossRef]
  28. G. M. Bonner, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow, G4 0NW, UK, (personal communication, 2013).
  29. X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express20(17), 19305–19312 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (5)

2011 (2)

2010 (3)

2009 (2)

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett.34(18), 2763–2765 (2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

2007 (3)

2006 (1)

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

2005 (2)

2004 (4)

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett.29(21), 2524–2526 (2004).
[CrossRef] [PubMed]

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
[CrossRef]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004).
[CrossRef] [PubMed]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

1999 (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
[CrossRef]

1966 (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
[CrossRef]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Basiev, T. T.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

Bonner, G. M.

Burakevich, V. N.

Burns, D.

Cerny, P.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

Chen, W.

Chen, Y. F.

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
[CrossRef]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004).
[CrossRef] [PubMed]

Cheng, W.

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Damen, T. C.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
[CrossRef]

Dawson, M. D.

Dekker, P.

Demidovich, A. A.

Ding, S.

S. Ding, M. Wang, S. Wang, and W. Zhang, “Investigation on LD end-pumped passively Q-switched c-cut Nd: YVO4 self-Raman laser,” Opt. Express21(11), 13052–13061 (2013).
[CrossRef] [PubMed]

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Duan, Y.

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Fan, S.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Fong, K. C. S.

J. H. Lock and K. C. S. Fong, “Retinal Laser Photocoagulation,” Med. J. Malaysia65(1), 88–94, quiz 95 (2010).
[PubMed]

Friel, I.

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Geoghegan, S. L.

Grabtchikov, A. S.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Hastie, J. E.

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Huang, C.

Huang, Y.

Huo, Y.

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Jakutis-Neto, J.

Jelinkova, H.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

Jia, P.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kemp, A. J.

Kiefer, W.

Kitzler, O.

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Lee, A.

T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
[CrossRef]

Lee, A. J.

Lei, L.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Li, S.

Li, X.

Lin, J.

Lisinetskii, V. A.

Liu, B.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Lock, J. H.

J. H. Lock and K. C. S. Fong, “Retinal Laser Photocoagulation,” Med. J. Malaysia65(1), 88–94, quiz 95 (2010).
[PubMed]

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Lü, Y.

Lubeigt, W.

Maksimenka, R.

McKay, A.

Mildren, R. P.

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett.37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
[CrossRef]

Okida, M.

T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
[CrossRef]

Omatsu, T.

T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
[CrossRef]

Orlovich, V. A.

Pask, H.

Pask, H. M.

T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
[CrossRef]

X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express20(17), 19305–19312 (2012).
[CrossRef] [PubMed]

J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express20(14), 15180–15185 (2012).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 692–704 (2007).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett.32(9), 1114–1116 (2007).
[CrossRef] [PubMed]

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005).
[CrossRef] [PubMed]

Piper, J. A.

Porto, S. P. S.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
[CrossRef]

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
[CrossRef]

Qingpu, W.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Savitski, V. G.

Schmitt, M.

Shuzhen, F.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Spence, D. J.

Su, F.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Tell, B.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Wang, J.

Wang, M.

Wang, Q.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Wang, S.

Wei, Y.

Wetter, N. U.

Xia, J.

Xiaohan, C.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Xiaolei, Z.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Xingyu, Z.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Xiong, Z.

Ye, N.

Zhang, C.

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Zhang, G.

Zhang, H.

Zhang, W.

Zhang, X.

Zhaojun, L.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Zhenhua, C.

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

Zhu, H.

Zverev, P. G.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

Appl. Phys. B (2)

T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012).
[CrossRef]

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 692–704 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006).
[CrossRef]

Med. J. Malaysia (1)

J. H. Lock and K. C. S. Fong, “Retinal Laser Photocoagulation,” Med. J. Malaysia65(1), 88–94, quiz 95 (2010).
[PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Opt. Commun. (2)

F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (9)

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett.37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett.29(21), 2524–2526 (2004).
[CrossRef] [PubMed]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett.30(13), 1701–1703 (2005).
[CrossRef] [PubMed]

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005).
[CrossRef] [PubMed]

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett.35(17), 2964–2966 (2010).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010).
[CrossRef] [PubMed]

P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett.32(9), 1114–1116 (2007).
[CrossRef] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004).
[CrossRef] [PubMed]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett.34(18), 2763–2765 (2009).
[CrossRef] [PubMed]

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999).
[CrossRef]

Phys. Rev. (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966).
[CrossRef]

Prog. Quantum Electron. (2)

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Other (2)

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “330 mW CW yellow emission from miniature self-Raman laser based on direct HR-coated Nd:YVO4 crystal,” IQEC/CLEO Pacific Rim, p. C289 (2011).

G. M. Bonner, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow, G4 0NW, UK, (personal communication, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Raman spectrum of the a-cut Nd:YVO4 rod with X(ZZ)scattering configuration and (b) schematic diagram of the self-Raman Nd:YVO4 laser configuration.

Fig. 2
Fig. 2

(a) Power transfer of the λ = 1109nm output power and (b) optical spectrum of the Raman laser output at maximum output power for λ = 1109nm.

Fig. 3
Fig. 3

(a) Power transfer of the λ = 1158nm output power and (b) optical spectrum of the Raman laser outputs at maximum output power for λ = 1158nm (resolution bandwidth: 1nm).

Fig. 4
Fig. 4

(a) Power transfer of the λ = 1231nm output power and (b) optical spectrum of the Raman laser outputs at maximum output power for λ = 1231nm (resolution bandwidth: 1nm).

Metrics