Abstract

Cascaded difference frequency generation has been observed in intracavity optical parametric oscillators based on bulk lithium niobate and producing nanosecond pulses of terahertz radiation. Two idler waves are generated, namely: the primary idler wave associated with the parametric down conversion process itself; and a secondary idler wave, due to difference frequency generation. Experimental investigations of the frequency, temporal evolution, propagation direction, intensity, phase matching and oscillation threshold of the generated down-converted waves are reported. The overall generation efficiency for the terahertz radiation is enhanced, thereby overcoming the Manley-Rowe limit. Advantages of the present approach over schemes based on periodically poled lithium niobate are identified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
    [CrossRef]
  2. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
    [CrossRef]
  3. K. Imai and K. Kawase, “A frequency-agile terahertz-wave parametric oscillator,” Opt. Express8, 699–704 (2001).
    [CrossRef] [PubMed]
  4. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5, 559–576 (2008).
    [CrossRef]
  5. T. Edwards, D. Walsh, M. Spurr, C. Rae, and M. Dunn, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express14, 1582–1589 (2006).
    [CrossRef] [PubMed]
  6. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
    [CrossRef]
  7. D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intra-cavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B26, 1196–1202 (2009).
    [CrossRef]
  8. D. A. Walsh, P. G. Browne, M. H. Dunn, and C. F. Rae, “Intracavity parametric generation of nanosecond terahertz radiation using quasi-phase-matching,” Opt. Express18, 13951–13963 (2010).
    [CrossRef] [PubMed]
  9. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express17, 6623–6628 (2009).
    [CrossRef] [PubMed]
  10. R. Sowade, I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express17, 22303–22310 (2009).
    [CrossRef]
  11. I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.
  12. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in synchronously-pumped optical parametric oscillators using quasi-phase-matched GaAs,” Opt. Lett.32, 1284–1286 (2007).
    [CrossRef] [PubMed]
  13. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser & Photonics Reviews2, 11–25 (2008).
    [CrossRef]
  14. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt.40, 1423–1526 (2001).
    [CrossRef]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide –doped lithium niobate,” J. Opt. Soc. Am. B14, 3319–3322 (1997).
    [CrossRef]
  16. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

2010 (1)

2009 (3)

2008 (3)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
[CrossRef]

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser & Photonics Reviews2, 11–25 (2008).
[CrossRef]

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5, 559–576 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

2001 (2)

1997 (1)

1974 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
[CrossRef]

1969 (1)

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Beigang, R.

Breunig, I.

R. Sowade, I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express17, 22303–22310 (2009).
[CrossRef]

I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.

Browne, P. G.

Buse, K.

R. Sowade, I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express17, 22303–22310 (2009).
[CrossRef]

I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.

Camara Mayorga, I.

Dierolf, V.

Dunn, M.

Dunn, M. H.

Edwards, T.

Edwards, T. J.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intra-cavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B26, 1196–1202 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
[CrossRef]

Fejer, M. M.

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
[CrossRef]

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

Imai, K.

Ito, H.

Johnson, B. C.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Jundt, D.

Kawase, K.

Kiessling, J.

R. Sowade, I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express17, 22303–22310 (2009).
[CrossRef]

I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.

Kitaeva, G. Kh.

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5, 559–576 (2008).
[CrossRef]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

Minamide, H.

Molter, D.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

Puthoff, H. E.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Rae, C.

Rae, C. F.

Schaar, J. E.

Shikata, J.

Small, D. L.

Sowade, R.

R. Sowade, I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express17, 22303–22310 (2009).
[CrossRef]

I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.

Spurr, M.

Stothard, D. J. M.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intra-cavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B26, 1196–1202 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
[CrossRef]

Sussman, S. S.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Theuer, M.

Thomson, C. L.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
[CrossRef]

Tulea, C.

Vodopyanov, K. L.

Walsh, D.

Walsh, D. A.

Yarborough, J. M.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

Zelmon, D. E.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range,” Appl. Phys. Lett.97, 123505 (2005).

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3without a resonator,” Appl. Phys. Lett.15, 102–105 (1969).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26, 418–421 (1974).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett.92,141105-1–141105-3 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser & Photonics Reviews (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser & Photonics Reviews2, 11–25 (2008).
[CrossRef]

Laser Phys. Lett. (1)

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5, 559–576 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

I. Breunig, R. Sowade, J. Kiessling, and K. Buse, “Higher-order cascaded processes in continuous-wave optical parametric oscillators,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CD11-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the intracavity terahertz OPO.

Fig. 2
Fig. 2

Simplified schematic showing the propagation directions of the pump, idler and terahertz waves.

Fig. 3
Fig. 3

Typical OSA trace showing the pump, primary idler and secondary idler waves.

Fig. 4
Fig. 4

Graph comparing the frequency differences for the DFG process with those for the parametric process, along with a straight line indicating equality.

Fig. 5
Fig. 5

Phase matching condition corresponding to parametric generation of the primary idler and terahertz waves along with DFG of the secondary idler by the mixing of the terahertz and primary idler waves.

Fig. 6
Fig. 6

Graph of (Δk · l) as a function of the terahertz frequency, for l=1mm. The line Δk · l = π is also indicated.

Fig. 7
Fig. 7

Temporal profiles of the pump-wave, primary and secondary idler-waves. (a) The relative timing of the pump and primary idler waves. (b) The primary and secondary idler waves are generated simultaneously.

Fig. 8
Fig. 8

Pump and idler energy measurements, showing the common threshold energy for the primary and secondary idler-waves.

Tables (2)

Tables Icon

Table 1 Summary of results from OSA measurements of the primary and secondary idler-waves. The wavelength of the pump laser was fixed at 281.68THz.

Tables Icon

Table 2 Comparison of calculated and measured values of angle α (see Fig. 5).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ν p = ν i 1 + ν T
k j = 2 π n j ν j c
ν i 2 = ν i 1 ν T
( A B ) 2 = k p 2 + ( 2 k T ) 2 4 k p k T cos θ
k i 1 2 = k p 2 + k T 2 2 k p k T cos θ
A B = ( 2 k T 2 k p 2 + 2 k i 1 2 )
Δ k = E B = ( 2 k T 2 k p 2 + 2 k i 1 2 ) k i 2
Δ k l π
Δ k = 2 π n 0 c [ ( n T n 0 ) 2 1 ] ν T 2 ν p
cos α = AB 2 + k i 1 2 k T 2 2 × A B × k i 1
α = k T 2 ( A B k i 1 ) 2 A B × k i 1

Metrics