Abstract

We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcomb’s optical spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of 1.6 × 10−13 at 1 s. The spectrum of a microcomb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30, 1734–1736 (2005).
    [CrossRef] [PubMed]
  2. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
    [CrossRef] [PubMed]
  3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
    [CrossRef] [PubMed]
  4. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 ghz near-ir laser frequency comb,” Opt. Express20, 6631–6643 (2012).
    [CrossRef] [PubMed]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
    [CrossRef]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
    [CrossRef] [PubMed]
  7. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a caf2 resonator,” Opt. Lett.34, 878–880 (2009).
    [CrossRef] [PubMed]
  8. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011).
    [CrossRef]
  9. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).
  10. P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
    [CrossRef]
  11. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
    [CrossRef]
  12. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
    [CrossRef]
  13. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
    [CrossRef] [PubMed]
  14. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
    [CrossRef]
  15. P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013).
    [CrossRef]
  16. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
    [CrossRef]
  17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).
  18. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013).
    [CrossRef] [PubMed]
  19. T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
    [CrossRef]
  20. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
    [CrossRef]
  21. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
    [CrossRef] [PubMed]
  22. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
    [CrossRef]
  23. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
    [CrossRef] [PubMed]
  24. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004).
    [CrossRef] [PubMed]
  25. D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79, 041805–4 (2009).
    [CrossRef]
  26. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
    [CrossRef] [PubMed]
  27. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
    [CrossRef]
  28. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 ghz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
    [CrossRef]
  29. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
    [CrossRef]

2013

2012

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 ghz near-ir laser frequency comb,” Opt. Express20, 6631–6643 (2012).
[CrossRef] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
[CrossRef] [PubMed]

2011

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

2010

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
[CrossRef] [PubMed]

2009

2008

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

2007

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

2006

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

2005

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30, 1734–1736 (2005).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

2004

2000

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

1993

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
[CrossRef]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Bartels, A.

Bender, C. F.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Botzer, B.

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Carmon, T.

Chembo, Y. K.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
[CrossRef] [PubMed]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Del’Haye, P.

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013).
[CrossRef]

P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).

Diddams, S. A.

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013).
[CrossRef]

P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
[CrossRef]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 ghz near-ir laser frequency comb,” Opt. Express20, 6631–6643 (2012).
[CrossRef] [PubMed]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011).
[CrossRef]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 ghz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
[CrossRef]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30, 1734–1736 (2005).
[CrossRef] [PubMed]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Foster, M. A.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Gaeta, A. L.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Gerginov, V.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Gorodetsky, M.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Grudinin, I. S.

Hansch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Hollberg, L.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Holzwarth, R. L.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Johnson, A. R.

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
[CrossRef]

Lamont, M. R. E.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Lee, H.

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
[CrossRef] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Levy, J. S.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Li, J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
[CrossRef] [PubMed]

Lipson, M.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Mahadevan, S.

Maleki, L.

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a caf2 resonator,” Opt. Lett.34, 878–880 (2009).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
[CrossRef]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
[CrossRef]

Okawachi, Y.

Osterman, S.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Papp, S. B.

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013).
[CrossRef]

P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011).
[CrossRef]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Quinlan, F.

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 ghz near-ir laser frequency comb,” Opt. Express20, 6631–6643 (2012).
[CrossRef] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Ramsey, L.

Redman, S.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Rubiola, E.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

Saha, K.

Salem, R.

Savchenkov, A. A.

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

Shim, B.

Sigurdsson, S.

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

Strekalov, D. V.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
[CrossRef] [PubMed]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79, 041805–4 (2009).
[CrossRef]

Tanner, C. E.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Terrien, R.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Vahala, K.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Xiao, S.

Y., W. C.

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

Yang, K. Y.

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012).
[CrossRef] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

Yang, L.

Ycas, G. G.

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

Yu, N.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
[CrossRef] [PubMed]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79, 041805–4 (2009).
[CrossRef]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a caf2 resonator,” Opt. Lett.34, 878–880 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013).
[CrossRef]

Nat Photon

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012).
[CrossRef]

Nat. Photon.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011).
[CrossRef]

Nature

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005).
[CrossRef]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79, 041805–4 (2009).
[CrossRef]

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008).
[CrossRef]

P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008).
[CrossRef] [PubMed]

Quantum Electronics, IEEE Journal of

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993).
[CrossRef]

Science

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Other

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Implementation of parametric seeding. (a) Model for comb generation based on parametric oscillation and FWM. A microcomb with a line spacing close to the resonator FSR is created via a primary parametric process (n1) with spacing ΩsmiFSR in combination with a secondary process (n2) active in adjacent resonator modes. All other lines originate from these initial ones. Parametric seeding can influence comb generation not only by initiating the secondary process, but via injection seeding of the primary one. (b) The setup for our experiments consists of a laser, which is intensity modulated in a Mach-Zehnder EOM device, amplified, and coupled into a silica disk resonator [22] via tapered fiber [23]. To analyze microcomb spectra, we use photodetection to record the line spacing, and we make line-by-line optical frequency measurements with respect to a reference comb. BPF: bandpass filter, BRF: bandreject filter, OSA: optical spectrum analyzer. (c) Optical spectrum for a microcomb with parametric seeding.

Fig. 2
Fig. 2

Control of the microcomb line spacing via parametric seeding. (a) Disk resonator transmission with thermal bistability [24] (black), optical power (blue), and microwave power (red) as the pump laser is tuned onto resonance of the microcavity. The optical and microwave outputs of the comb are measured after filtering out the pump and sidebands. (b) Near-zero difference between the comb’s line spacing (Δν) and seeding frequency (feo). (c) Optical (red) and microwave (points) power as feo is scanned. The resonator FSR is 33.02932(9) GHz. (d, e) Microcomb optical spectra for different settings of the seeding frequency; feo =33.026861 in (d) and feo =33.030 in (e). (f) Absolute line spacing Allan deviation as a function of measurement time.

Fig. 3
Fig. 3

Subcomb behavior in microcombs. (a) Line frequency diagram (ν0 vs. m) for a microcomb composed of three independent subcombs. The black points represent FWM of the pump and seeding sidebands, and the red (blue) points represent the mi ≈ 20 (mi ≈ 60) subcomb. (b) Optical spectrum with three subcombs. The pump laser and seeding sidebands are filtered out. (c) Comb line tuning rate verses m. Here feo is set so only the mi ≈ 60 subcomb is present. (d) Tuning of the independent subcomb offset frequencies with feo. For the open triangles, the pump laser frequency is adjusted to shift the ν0 of all the points.

Fig. 4
Fig. 4

Onset of a continuously equidistant microcomb. (a) Optical heterodyne of various microcomb m-lines and the reference comb. The narrow peak in each trace at ν0 indicates the presence of an equidistant microcomb line, while the other peaks belong to the mi ≈ 60 subcomb. (b) Microcomb line spacing spectrum for data in (a). The equidistant and subcomb lines have the same spacing, but the subcomb offset appears here at ±0.5 MHz. (c) Black trace is the optical heterodyne signal for microcomb line m = 40 showing the n1 = 2, mi ≈ 20 subcomb at −2 MHz, and the n1 = 1, mi ≈ 60 subcomb at 5 MHz. Apparently the microcomb’s spectrum can consist of lines separated by more than the resonator’s linewidth. Tuning the pump laser frequency by on order of ±100 MHz shifts the subcomb lines’ ν0. The upper (red) and lower (blue) traces show injection locking of the two subcombs, which is obtained by tuning their ν0 toward zero. (d) Microwave output of the comb for the traces in (c).

Fig. 5
Fig. 5

Properties of the equidistant microcomb spectrum. (a) Measurements showing no offset from equidistance at the 2 Hz level for select m values up to 54. Error bars are the standard deviation of the mean for each point. (b) Equidistant comb line tuning versus m with slope of one.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν m = n 1 Ω s / 2 π + n 2 Δ ν ,
ν 0 = ν m m Δ ν = n 1 ( Ω s / 2 π Δ ν m i ) .

Metrics