Abstract

A reflective optic-fiber orientation-dependant inclinometer, in which a short piece of polarization-maintaining photonic crystal fiber (PM-PCF) is spliced with a lead-in single mode fiber (SMF) without any offset, is proposed and experimentally demonstrated. The hollow holes within the PM-PCF are partly collapsed due to the directional arc-heating splicing and couple two linearly polarized (LP) modes into the downstream PM-PCF. Then two LP-modes are reflected at the end face of PM-PCF and recoupled back into the lead-in SMF again via the collapsed splicing cross section. A well-defined interference pattern is obtained as the result of polarized modes interference. Both orientation and sensitivity of bending is determined unambiguously with this compact PM-PCF configuration.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  3. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  4. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett.27(10), 812–814 (2002).
    [CrossRef] [PubMed]
  5. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
    [CrossRef]
  6. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express17(21), 18501–18512 (2009).
    [CrossRef] [PubMed]
  7. F. C. McNeillie, E. Riis, J. Broeng, J. R. Folkenberg, A. Petersson, H. Simonsen, and C. Jacobsen, “Highly polarized photonic crystal fiber laser,” Opt. Express12(17), 3981–3987 (2004).
    [CrossRef] [PubMed]
  8. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007).
    [CrossRef]
  9. H. Y. Fu, S. K. Khijwania, H. Y. Tam, P. K. A. Wai, and C. Lu, “Polarization-maintaining photonic-crystal-fiber-based all-optical polarimetric torsion sensor,” Appl. Opt.49(31), 5954–5958 (2010).
  10. B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
    [CrossRef]
  11. B. Dong, J. Z. Hao, C. Y. Liaw, and Z. W. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based Sagnac interferometer and its Application for fiber sensor,” J. Lightwave Technol.29(12), 1759–1763 (2011).
  12. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
    [CrossRef]
  13. S. H. Liu, N. L. Liu, M. X. Hou, J. T. Guo, Z. H. Li, and P. X. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett.38(4), 449–451 (2013).
    [CrossRef] [PubMed]
  14. A. Rauf, J. L. Zhao, B. Q. Jiang, Y. J. Jiang, and W. Jiang, “Bend measurement using an etched fiber incorporating a fiber Bragg grating,” Opt. Lett.38(2), 214–216 (2013).
    [CrossRef] [PubMed]
  15. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett.31(20), 2960–2962 (2006).
    [CrossRef] [PubMed]
  16. L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett.35(7), 1034–1036 (2010).
    [CrossRef] [PubMed]
  17. Q. Z. Rong, X. G. Qiao, Y. Y. Du, D. Y. Feng, R. H. Wang, Y. Ma, H. Sun, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer with a core-cladding-mode fiber end-face mirror,” Appl. Opt.52(7), 1441–1447 (2013).
    [CrossRef] [PubMed]
  18. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett.30(21), 2864–2866 (2005).
    [CrossRef] [PubMed]
  19. J. Wang, K. Zheng, J. Peng, L. S. Liu, J. Li, and S. S. Jian, “Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser,” Opt. Express17(13), 10573–10583 (2009).
    [CrossRef] [PubMed]
  20. Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. B. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol.24(2), 861–869 (2006).
  21. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett.5(8), 354–356 (1980).
    [CrossRef] [PubMed]
  22. U. L. Block, M. J. F. Digonnet, M. M. Fejer, and V. Dangui, “Bending-induced birefringence of optical fiber cladding modes,” J. Lightwave Technol.24(6), 2336–2339 (2006).
    [CrossRef]
  23. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980).
    [CrossRef] [PubMed]

2013 (3)

2011 (2)

B. Dong, J. Z. Hao, C. Y. Liaw, and Z. W. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based Sagnac interferometer and its Application for fiber sensor,” J. Lightwave Technol.29(12), 1759–1763 (2011).

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
[CrossRef]

2010 (2)

2009 (4)

2007 (2)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2003 (2)

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002 (1)

1980 (2)

Albert, J.

Araújo, F. M.

Baptista, J. M.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Block, U. L.

Broeng, J.

Childs, P. A.

Cooper, K. L.

Coviello, G.

Dangui, V.

Digonnet, M. J. F.

Dimarcello, F. V.

Dong, B.

B. Dong, J. Z. Hao, C. Y. Liaw, and Z. W. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based Sagnac interferometer and its Application for fiber sensor,” J. Lightwave Technol.29(12), 1759–1763 (2011).

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
[CrossRef]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007).
[CrossRef]

Du, Y. Y.

Eickhoff, W.

Eom, J. B.

Fabris, J. L.

Falate, R.

Fejer, M. M.

Feng, D. Y.

Feng, Z. Y.

Ferreira, L. A.

Finazzi, V.

Fleming, J.

Folkenberg, J. R.

Frazão, O.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett.31(20), 2960–2962 (2006).
[CrossRef] [PubMed]

Fu, H. Y.

Ghalmi, S.

Golowich, S.

Guo, J. T.

Hao, J. Z.

B. Dong, J. Z. Hao, C. Y. Liaw, and Z. W. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based Sagnac interferometer and its Application for fiber sensor,” J. Lightwave Technol.29(12), 1759–1763 (2011).

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
[CrossRef]

Hou, M. X.

Hu, M. L.

Jacobsen, C.

Jesus, C.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Jian, S. S.

Jiang, B. Q.

Jiang, W.

Jiang, Y. J.

Khijwania, S. K.

Kim, J.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Lee, B. H.

Li, J.

Li, Z. H.

Liao, Y. B.

Liaw, C. Y.

Liu, L. S.

Liu, N. L.

Liu, S. H.

Lu, C.

Lu, P. X.

Ma, Y.

McNeillie, F. C.

Monberg, E.

Moon, D. S.

Paek, U. C.

Peng, J.

Petersson, A.

Pickrell, G. R.

Pruneri, V.

Qiao, X. G.

Ramachandran, S.

Rashleigh, S. C.

Rauf, A.

Riis, E.

Rong, Q. Z.

Roy, P.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Santos, J. L.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett.31(20), 2960–2962 (2006).
[CrossRef] [PubMed]

Shao, L. Y.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007).
[CrossRef]

Simonsen, H.

Sun, H.

Tam, H. Y.

Ulrich, R.

Villatoro, J.

Wai, P. K.

Wai, P. K. A.

Wang, A. B.

Wang, J.

Wang, R. H.

Wisk, P.

Wong, A. C. L.

Xu, Z. W.

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
[CrossRef]

B. Dong, J. Z. Hao, C. Y. Liaw, and Z. W. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based Sagnac interferometer and its Application for fiber sensor,” J. Lightwave Technol.29(12), 1759–1763 (2011).

Yan, M. F.

Yang, G. H.

Zhao, J. L.

Zheng, K.

Zhu, Y. Z.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol.17(3), 233–235 (2011).
[CrossRef]

Opt. Lett. (8)

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980).
[CrossRef] [PubMed]

S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett.5(8), 354–356 (1980).
[CrossRef] [PubMed]

B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett.27(10), 812–814 (2002).
[CrossRef] [PubMed]

L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett.35(7), 1034–1036 (2010).
[CrossRef] [PubMed]

S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett.30(21), 2864–2866 (2005).
[CrossRef] [PubMed]

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett.31(20), 2960–2962 (2006).
[CrossRef] [PubMed]

A. Rauf, J. L. Zhao, B. Q. Jiang, Y. J. Jiang, and W. Jiang, “Bend measurement using an etched fiber incorporating a fiber Bragg grating,” Opt. Lett.38(2), 214–216 (2013).
[CrossRef] [PubMed]

S. H. Liu, N. L. Liu, M. X. Hou, J. T. Guo, Z. H. Li, and P. X. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett.38(4), 449–451 (2013).
[CrossRef] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of PM-PCF based orientation-dependant inclinometer sensing system. Inset (a) shows the sensing configuration of PM-PCF sensing probe, and (b) shows the photograph of the splicing point between SMF and (PM-PCF), and the cross section of PM-PCF.

Fig. 2
Fig. 2

Experimentally measured interference spectra, (a) between LP01 (x and y) and LP11 (x and y), (b) between LP01 (y) and LP11 (x); (c) shows the spatial frequency domain of interference in (a) and (b), (d) shows the field orientation-dependant plots which demonstrated the construction of LP11 modes, i.e. TM01 + HE21 rotated 45° = LP11(y), and -TE01 + HE21 = LP11(x).

Fig. 3
Fig. 3

Scheme illustration of light transmitting in the system shown in Fig. 1(a).

Fig. 4
Fig. 4

Simulated transmission spectra of PM-PCF in the states of (a) PC (θ1, π/6, π/4), (b) PC (π/6, θ2, π/4), (c) PC (π/2, π/4, θ3).

Fig. 5
Fig. 5

Simulated interference pattern shifts with bending-angle change.

Fig. 6
Fig. 6

(a) Schematic diagram of the bending angle, (b) spectral blue shifting versus bending.

Fig. 7
Fig. 7

(a) Wavelength response to the bending angle, (b) angular dependence of the inclinometer versus different orientations, (c) compared with two wavelengths’ response to the bending angle.

Fig. 8
Fig. 8

The temperature response of the PM-PCF, (a) the dip wavelength response to temperature, (b) spectral red shifting versus temperature.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E 11 (r,φ)= y ^ A J 1 ( X 11 r a ){ sin(mφ),(even) cos(mφ),(odd)
M pc ( θ 1 , θ 2 , θ 3 )= i 2 [ a+ib,c+id cid,a+ib ]
a=cos(2 θ 2 )cos(2 θ 3 2 θ 2 +2 θ 1 ) b=cos(2 θ 3 2 θ 2 )cos(2 θ 2 2 θ 1 ) c=sin(2 θ 2 )sin(2 θ 3 2 θ 2 +2 θ 1 ) d=sin(2 θ 3 2 θ 2 )sin(2 θ 2 2 θ 1 )
M PMPCF =[ 10 0 e iΔ φ 1 + e iΔ φ 2 ]
M EF =[ r0 0r ]
[ E outx E outy ]= M IP ' M PC ' ( θ j ) M PMPCF ' M EF M PMPCF M PC ( θ j ) M IP [ E in 0 ]
T= | E outx | 2 | E in | 2 = r 4 [ (a+ib) 2 ( e i2Δ φ 1 + e i2Δ φ 2 )+ (c+id) 2 ] × [ (a+ib) 2 ( e i2Δ φ 1 + e i2Δ φ 2 )+ (c+id) 2 ] *
I= | E 1 + E 2 e iΔ φ 1 + E 3 e iΔ φ 2 | 2 = E 1 2 + E 2 2 + E 3 2 +2 E 1 E 2 cosΔ φ 1 +2 E 1 E 3 cosΔ φ 2 +2 E 2 E 3 cosΔ φ 3
B j(j=1,2,3) (β)= B j | β=0 +δ B j
δ B j = n i 3 ( p 11 p 12 )(1+v) 1 ( R 0 cosβ) 2 r 2
I= | E 1 + E 2 e iΔ φ 1 + E 3 e iΔ φ 2 | 2 = E 1 2 + E 2 2 + E 3 2 +2 E 1 E 2 cos 2π λ ( B 1 1.08× 10 6 1 cos 2 β ) +2 E 1 E 3 cos 2π λ ( B 2 1.08× 10 6 1 cos 2 β ) +2 E 2 E 3 cos 2π λ ( B 3 10 6 1 cos 2 β )

Metrics