Abstract

We analyze and experimentally realize coplanar imaging of transverse-electric (TE) modes surface waves using weakly anisotropic metasurface consisting of non-periodic subwavelength U-shaped metallic structures. Such metallic structures with the exciting coplanar dipole are integrated on the top surface of a thin dielectric board. A circuit model is utilized to analyze the characteristics of the surface waves supported by the metasurface. By varying the geometrical parameters of the U-shaped metallic structures, the phases of surface waves are modulated, from which a planar lens is presented for the TE-mode coplanar imaging. The analyses and measurements show that anisotropies of the U-shaped metallic structures have little influence on the imaging properties of the planar lens. The measurement results have good agreements to numerical simulations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
    [CrossRef]
  2. P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011).
    [CrossRef]
  3. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
    [CrossRef]
  4. M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
    [CrossRef]
  5. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
    [CrossRef] [PubMed]
  6. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  7. Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
    [CrossRef]
  8. R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys.32(12), 727–734 (1954).
    [CrossRef]
  9. R. S. Elliott, “On the theory of corrugated plane surfaces,” Trans. IRE professional group on Antennas and Propagation. (71–81) 1954.
  10. W. Rotman, “A study of single-surface corrugated guides,” Proceedings of the IRE (951–959)1951.
  11. H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
    [CrossRef]
  14. T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
    [CrossRef] [PubMed]
  15. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett.35(9), 1320–1322 (2010).
    [CrossRef] [PubMed]
  16. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express17(20), 18184–18195 (2009).
    [CrossRef] [PubMed]
  17. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
    [CrossRef] [PubMed]
  18. Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
    [CrossRef]
  19. M. F. Volk, B. Reinhard, J. Neu, R. Beigang, and M. Rahm, “In-plane focusing of terahertz surface waves on a gradient index metamaterial film,” Opt. Lett.38(12), 2156–2158 (2013).
    [CrossRef]
  20. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
    [CrossRef]

2013

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

M. F. Volk, B. Reinhard, J. Neu, R. Beigang, and M. Rahm, “In-plane focusing of terahertz surface waves on a gradient index metamaterial film,” Opt. Lett.38(12), 2156–2158 (2013).
[CrossRef]

2012

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
[CrossRef]

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

2011

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011).
[CrossRef]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

2010

2009

2005

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2002

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

1954

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys.32(12), 727–734 (1954).
[CrossRef]

H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).

Agrafiotis, S.

Aieta, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Alu, A.

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011).
[CrossRef]

Barlow, H. E. M.

H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).

Beigang, R.

Beruete, M.

Bosiljevac, M.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Caminita, F.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

Capasso, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Casaletti, M.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Chen, P. Y.

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011).
[CrossRef]

Cui, T. J.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Falcone, F.

Gaburro, Z.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Genevet, P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Gordon, J. A.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

He, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Hill, D. A.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

Holloway, C. L.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

Hurd, R. A.

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys.32(12), 727–734 (1954).
[CrossRef]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

Karbowiak, A. E.

H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).

Kats, M. A.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kuester, E. F.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

Li, X.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Love, D. C.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

Maci, S.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Maier, S. A.

Marcos, J. S.

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

Martin-Cano, D.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Maslovski, S. I.

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

Minatti, G.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Morgado, T. A.

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

Navarro-Cía, M.

Neu, J.

Paul, O.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Rahm, M.

Reinhard, B.

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

Rotman, W.

W. Rotman, “A study of single-surface corrugated guides,” Proceedings of the IRE (951–959)1951.

Shamonina, E.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

Shen, X. P.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Silveirinha, M. G.

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

Sipus, Z.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

Solymar, L.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

Sorolla, M.

Sun, S. L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Turpin, J. P.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
[CrossRef]

Volk, M. F.

Werner, D. H.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
[CrossRef]

Wu, Q.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
[CrossRef]

Xiao, S. Y.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Xu, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Yu, N. F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

Zhou, L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Can. J. Phys.

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys.32(12), 727–734 (1954).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

IEEE Trans. Antenn. Propag.

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012).
[CrossRef]

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012).
[CrossRef]

J. Appl. Phys.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Light Sci. Appl.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012).
[CrossRef]

Nat. Mater.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011).
[CrossRef]

Phys. Rev. Lett.

T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013).
[CrossRef] [PubMed]

Proceedings of the IEEE-part III: Radio and Communication Engineering

H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Other

R. S. Elliott, “On the theory of corrugated plane surfaces,” Trans. IRE professional group on Antennas and Propagation. (71–81) 1954.

W. Rotman, “A study of single-surface corrugated guides,” Proceedings of the IRE (951–959)1951.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The waveguide model to solve the eigen modes of unit cell, a rectangular metal patch with a rectangular groove. (b) The effective circuit model of the waveguide model.

Fig. 2
Fig. 2

(a) The detailed geometrical parameters of a single U-shaped metallic structure, in which p x =3.4mm , p y =4.6mm , d x =3mm , d y =4mm , w=1.5mm , h=2.2mm , and t=1mm . The thickness of the U-shaped metallic structure is 0.018mm. The lossless dielectric constant is 2.2. (b) The 2D dispersion surface of the single element with the same geometric parameters as in Fig. 2(a).

Fig. 3
Fig. 3

Isofrequency curves of the U-shaped metallic structure at 11GHz when the groove length h increases from 1 mm to 3.4 mm with a step of 0.3 mm. The dashed red arrow shows the tendency of the curves with increasing h.

Fig. 4
Fig. 4

(a) The schematic diagram of the dipole source, whose length is 12mm. (b) The schematic diagram of the metasurface lens.

Fig. 5
Fig. 5

(a) Relationship of phase changes in the x direction of the unit φ x to the depths of grooves h. (b) The phase distribution φ s at the left edge of the lens and the designed distribution of groove depth h along the y direction. The horizontal coordinate represents the positions of the U-shaped metallic structures along the y direction.

Fig. 6
Fig. 6

The simulation and measurement results. (a) The measurement configuration, in which the measurement plane is 2 mm above the metasurface lens. (b) A section of the metasurface lens. Numbers below the section are detailed values of heights of the corresponding U-shaped units. (c) The measurement (upper) and simulation (lower) results of the y-component electric fields.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Y ¯ ¯ s =[ Y xx Y xy Y yx Y yy ].
[ Y xx Y xy Y yx Y yy ]+2[ j Y 0 TM cot( k z H) 0 0 j Y 0 TE cot( k z H) ]=0,
( Y xx 2 Y 0 TM )( Y yy 2 Y 0 TE )= Y xy Y yx ,
( Y xx 2 Y 0 TM )( Y yy 2 Y 0 TE )=0.
2 φ s (i)+m φ x (i)+2nπ=2 φ s (1)+m φ x (1),

Metrics